| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divdivdiv |  |-  ( ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) /\ ( ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( ( A / C ) / ( B / C ) ) = ( ( A x. C ) / ( C x. B ) ) ) | 
						
							| 2 | 1 | 3impdir |  |-  ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) / ( B / C ) ) = ( ( A x. C ) / ( C x. B ) ) ) | 
						
							| 3 |  | mulcom |  |-  ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) | 
						
							| 4 | 3 | adantrr |  |-  ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. C ) = ( C x. A ) ) | 
						
							| 5 | 4 | 3adant2 |  |-  ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. C ) = ( C x. A ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. C ) / ( C x. B ) ) = ( ( C x. A ) / ( C x. B ) ) ) | 
						
							| 7 |  | divcan5 |  |-  ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) / ( C x. B ) ) = ( A / B ) ) | 
						
							| 8 | 2 6 7 | 3eqtrd |  |-  ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) / ( B / C ) ) = ( A / B ) ) |