Step |
Hyp |
Ref |
Expression |
1 |
|
divcan8d.a |
|- ( ph -> A e. CC ) |
2 |
|
divcan8d.b |
|- ( ph -> B e. CC ) |
3 |
|
divcan8d.a0 |
|- ( ph -> A =/= 0 ) |
4 |
|
divcan8d.b0 |
|- ( ph -> B =/= 0 ) |
5 |
1 2
|
mulcld |
|- ( ph -> ( A x. B ) e. CC ) |
6 |
1 2 3 4
|
mulne0d |
|- ( ph -> ( A x. B ) =/= 0 ) |
7 |
1 2 6
|
mulne0bbd |
|- ( ph -> B =/= 0 ) |
8 |
2 5 2 6 7
|
divcan7d |
|- ( ph -> ( ( B / B ) / ( ( A x. B ) / B ) ) = ( B / ( A x. B ) ) ) |
9 |
8
|
eqcomd |
|- ( ph -> ( B / ( A x. B ) ) = ( ( B / B ) / ( ( A x. B ) / B ) ) ) |
10 |
2 4
|
dividd |
|- ( ph -> ( B / B ) = 1 ) |
11 |
1 2 4
|
divcan4d |
|- ( ph -> ( ( A x. B ) / B ) = A ) |
12 |
10 11
|
oveq12d |
|- ( ph -> ( ( B / B ) / ( ( A x. B ) / B ) ) = ( 1 / A ) ) |
13 |
|
eqidd |
|- ( ph -> ( 1 / A ) = ( 1 / A ) ) |
14 |
9 12 13
|
3eqtrd |
|- ( ph -> ( B / ( A x. B ) ) = ( 1 / A ) ) |