| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divcan8d.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | divcan8d.b |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | divcan8d.a0 |  |-  ( ph -> A =/= 0 ) | 
						
							| 4 |  | divcan8d.b0 |  |-  ( ph -> B =/= 0 ) | 
						
							| 5 | 1 2 | mulcld |  |-  ( ph -> ( A x. B ) e. CC ) | 
						
							| 6 | 1 2 3 4 | mulne0d |  |-  ( ph -> ( A x. B ) =/= 0 ) | 
						
							| 7 | 1 2 6 | mulne0bbd |  |-  ( ph -> B =/= 0 ) | 
						
							| 8 | 2 5 2 6 7 | divcan7d |  |-  ( ph -> ( ( B / B ) / ( ( A x. B ) / B ) ) = ( B / ( A x. B ) ) ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ph -> ( B / ( A x. B ) ) = ( ( B / B ) / ( ( A x. B ) / B ) ) ) | 
						
							| 10 | 2 4 | dividd |  |-  ( ph -> ( B / B ) = 1 ) | 
						
							| 11 | 1 2 4 | divcan4d |  |-  ( ph -> ( ( A x. B ) / B ) = A ) | 
						
							| 12 | 10 11 | oveq12d |  |-  ( ph -> ( ( B / B ) / ( ( A x. B ) / B ) ) = ( 1 / A ) ) | 
						
							| 13 |  | eqidd |  |-  ( ph -> ( 1 / A ) = ( 1 / A ) ) | 
						
							| 14 | 9 12 13 | 3eqtrd |  |-  ( ph -> ( B / ( A x. B ) ) = ( 1 / A ) ) |