Step |
Hyp |
Ref |
Expression |
1 |
|
expcn.j |
|- J = ( TopOpen ` CCfld ) |
2 |
|
divrec |
|- ( ( x e. CC /\ A e. CC /\ A =/= 0 ) -> ( x / A ) = ( x x. ( 1 / A ) ) ) |
3 |
2
|
3expb |
|- ( ( x e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( x / A ) = ( x x. ( 1 / A ) ) ) |
4 |
3
|
ancoms |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. CC ) -> ( x / A ) = ( x x. ( 1 / A ) ) ) |
5 |
4
|
mpteq2dva |
|- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> ( x / A ) ) = ( x e. CC |-> ( x x. ( 1 / A ) ) ) ) |
6 |
1
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
7 |
6
|
a1i |
|- ( ( A e. CC /\ A =/= 0 ) -> J e. ( TopOn ` CC ) ) |
8 |
7
|
cnmptid |
|- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> x ) e. ( J Cn J ) ) |
9 |
|
reccl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
10 |
7 7 9
|
cnmptc |
|- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> ( 1 / A ) ) e. ( J Cn J ) ) |
11 |
1
|
mulcn |
|- x. e. ( ( J tX J ) Cn J ) |
12 |
11
|
a1i |
|- ( ( A e. CC /\ A =/= 0 ) -> x. e. ( ( J tX J ) Cn J ) ) |
13 |
7 8 10 12
|
cnmpt12f |
|- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> ( x x. ( 1 / A ) ) ) e. ( J Cn J ) ) |
14 |
5 13
|
eqeltrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> ( x / A ) ) e. ( J Cn J ) ) |