Description: Closure law for division. (Contributed by NM, 21-Jul-2001) (Proof shortened by Mario Carneiro, 17-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | divcl | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divval | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
|
2 | receu | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E! x e. CC ( B x. x ) = A ) |
|
3 | riotacl | |- ( E! x e. CC ( B x. x ) = A -> ( iota_ x e. CC ( B x. x ) = A ) e. CC ) |
|
4 | 2 3 | syl | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( iota_ x e. CC ( B x. x ) = A ) e. CC ) |
5 | 1 4 | eqeltrd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |