Step |
Hyp |
Ref |
Expression |
1 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
2 |
1
|
ssriv |
|- NN C_ RR+ |
3 |
2
|
a1i |
|- ( A e. CC -> NN C_ RR+ ) |
4 |
|
divrcnv |
|- ( A e. CC -> ( n e. RR+ |-> ( A / n ) ) ~~>r 0 ) |
5 |
3 4
|
rlimres2 |
|- ( A e. CC -> ( n e. NN |-> ( A / n ) ) ~~>r 0 ) |
6 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
7 |
|
1zzd |
|- ( A e. CC -> 1 e. ZZ ) |
8 |
|
simpl |
|- ( ( A e. CC /\ n e. NN ) -> A e. CC ) |
9 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
10 |
9
|
adantl |
|- ( ( A e. CC /\ n e. NN ) -> n e. CC ) |
11 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
12 |
11
|
adantl |
|- ( ( A e. CC /\ n e. NN ) -> n =/= 0 ) |
13 |
8 10 12
|
divcld |
|- ( ( A e. CC /\ n e. NN ) -> ( A / n ) e. CC ) |
14 |
13
|
fmpttd |
|- ( A e. CC -> ( n e. NN |-> ( A / n ) ) : NN --> CC ) |
15 |
6 7 14
|
rlimclim |
|- ( A e. CC -> ( ( n e. NN |-> ( A / n ) ) ~~>r 0 <-> ( n e. NN |-> ( A / n ) ) ~~> 0 ) ) |
16 |
5 15
|
mpbid |
|- ( A e. CC -> ( n e. NN |-> ( A / n ) ) ~~> 0 ) |