Step |
Hyp |
Ref |
Expression |
1 |
|
eluznn |
|- ( ( M e. NN /\ n e. ( ZZ>= ` M ) ) -> n e. NN ) |
2 |
|
eqidd |
|- ( n e. NN -> ( m e. NN |-> ( A / m ) ) = ( m e. NN |-> ( A / m ) ) ) |
3 |
|
oveq2 |
|- ( m = n -> ( A / m ) = ( A / n ) ) |
4 |
3
|
adantl |
|- ( ( n e. NN /\ m = n ) -> ( A / m ) = ( A / n ) ) |
5 |
|
id |
|- ( n e. NN -> n e. NN ) |
6 |
|
ovexd |
|- ( n e. NN -> ( A / n ) e. _V ) |
7 |
2 4 5 6
|
fvmptd |
|- ( n e. NN -> ( ( m e. NN |-> ( A / m ) ) ` n ) = ( A / n ) ) |
8 |
7
|
eqcomd |
|- ( n e. NN -> ( A / n ) = ( ( m e. NN |-> ( A / m ) ) ` n ) ) |
9 |
1 8
|
syl |
|- ( ( M e. NN /\ n e. ( ZZ>= ` M ) ) -> ( A / n ) = ( ( m e. NN |-> ( A / m ) ) ` n ) ) |
10 |
9
|
adantll |
|- ( ( ( A e. CC /\ M e. NN ) /\ n e. ( ZZ>= ` M ) ) -> ( A / n ) = ( ( m e. NN |-> ( A / m ) ) ` n ) ) |
11 |
10
|
mpteq2dva |
|- ( ( A e. CC /\ M e. NN ) -> ( n e. ( ZZ>= ` M ) |-> ( A / n ) ) = ( n e. ( ZZ>= ` M ) |-> ( ( m e. NN |-> ( A / m ) ) ` n ) ) ) |
12 |
|
divcnv |
|- ( A e. CC -> ( m e. NN |-> ( A / m ) ) ~~> 0 ) |
13 |
12
|
adantr |
|- ( ( A e. CC /\ M e. NN ) -> ( m e. NN |-> ( A / m ) ) ~~> 0 ) |
14 |
|
simpr |
|- ( ( A e. CC /\ M e. NN ) -> M e. NN ) |
15 |
14
|
nnzd |
|- ( ( A e. CC /\ M e. NN ) -> M e. ZZ ) |
16 |
|
nnex |
|- NN e. _V |
17 |
16
|
mptex |
|- ( m e. NN |-> ( A / m ) ) e. _V |
18 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
19 |
|
eqid |
|- ( n e. ( ZZ>= ` M ) |-> ( ( m e. NN |-> ( A / m ) ) ` n ) ) = ( n e. ( ZZ>= ` M ) |-> ( ( m e. NN |-> ( A / m ) ) ` n ) ) |
20 |
18 19
|
climmpt |
|- ( ( M e. ZZ /\ ( m e. NN |-> ( A / m ) ) e. _V ) -> ( ( m e. NN |-> ( A / m ) ) ~~> 0 <-> ( n e. ( ZZ>= ` M ) |-> ( ( m e. NN |-> ( A / m ) ) ` n ) ) ~~> 0 ) ) |
21 |
15 17 20
|
sylancl |
|- ( ( A e. CC /\ M e. NN ) -> ( ( m e. NN |-> ( A / m ) ) ~~> 0 <-> ( n e. ( ZZ>= ` M ) |-> ( ( m e. NN |-> ( A / m ) ) ` n ) ) ~~> 0 ) ) |
22 |
13 21
|
mpbid |
|- ( ( A e. CC /\ M e. NN ) -> ( n e. ( ZZ>= ` M ) |-> ( ( m e. NN |-> ( A / m ) ) ` n ) ) ~~> 0 ) |
23 |
11 22
|
eqbrtrd |
|- ( ( A e. CC /\ M e. NN ) -> ( n e. ( ZZ>= ` M ) |-> ( A / n ) ) ~~> 0 ) |