| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divcnvshft.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | divcnvshft.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | divcnvshft.3 |  |-  ( ph -> A e. CC ) | 
						
							| 4 |  | divcnvshft.4 |  |-  ( ph -> B e. ZZ ) | 
						
							| 5 |  | divcnvshft.5 |  |-  ( ph -> F e. V ) | 
						
							| 6 |  | divcnvshft.6 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = ( A / ( k + B ) ) ) | 
						
							| 7 |  | divcnv |  |-  ( A e. CC -> ( m e. NN |-> ( A / m ) ) ~~> 0 ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> ( m e. NN |-> ( A / m ) ) ~~> 0 ) | 
						
							| 9 |  | nnssz |  |-  NN C_ ZZ | 
						
							| 10 |  | resmpt |  |-  ( NN C_ ZZ -> ( ( m e. ZZ |-> ( A / m ) ) |` NN ) = ( m e. NN |-> ( A / m ) ) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( ( m e. ZZ |-> ( A / m ) ) |` NN ) = ( m e. NN |-> ( A / m ) ) | 
						
							| 12 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 13 | 12 | reseq2i |  |-  ( ( m e. ZZ |-> ( A / m ) ) |` NN ) = ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) | 
						
							| 14 | 11 13 | eqtr3i |  |-  ( m e. NN |-> ( A / m ) ) = ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) | 
						
							| 15 | 14 | breq1i |  |-  ( ( m e. NN |-> ( A / m ) ) ~~> 0 <-> ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) ~~> 0 ) | 
						
							| 16 |  | 1z |  |-  1 e. ZZ | 
						
							| 17 |  | zex |  |-  ZZ e. _V | 
						
							| 18 | 17 | mptex |  |-  ( m e. ZZ |-> ( A / m ) ) e. _V | 
						
							| 19 |  | climres |  |-  ( ( 1 e. ZZ /\ ( m e. ZZ |-> ( A / m ) ) e. _V ) -> ( ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) ~~> 0 <-> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) ) | 
						
							| 20 | 16 18 19 | mp2an |  |-  ( ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) ~~> 0 <-> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) | 
						
							| 21 | 15 20 | bitri |  |-  ( ( m e. NN |-> ( A / m ) ) ~~> 0 <-> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) | 
						
							| 22 | 8 21 | sylib |  |-  ( ph -> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) | 
						
							| 23 | 18 | a1i |  |-  ( ph -> ( m e. ZZ |-> ( A / m ) ) e. _V ) | 
						
							| 24 |  | uzssz |  |-  ( ZZ>= ` M ) C_ ZZ | 
						
							| 25 | 1 24 | eqsstri |  |-  Z C_ ZZ | 
						
							| 26 | 25 | sseli |  |-  ( k e. Z -> k e. ZZ ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ph /\ k e. Z ) -> k e. ZZ ) | 
						
							| 28 | 4 | adantr |  |-  ( ( ph /\ k e. Z ) -> B e. ZZ ) | 
						
							| 29 | 27 28 | zaddcld |  |-  ( ( ph /\ k e. Z ) -> ( k + B ) e. ZZ ) | 
						
							| 30 |  | oveq2 |  |-  ( m = ( k + B ) -> ( A / m ) = ( A / ( k + B ) ) ) | 
						
							| 31 |  | eqid |  |-  ( m e. ZZ |-> ( A / m ) ) = ( m e. ZZ |-> ( A / m ) ) | 
						
							| 32 |  | ovex |  |-  ( A / ( k + B ) ) e. _V | 
						
							| 33 | 30 31 32 | fvmpt |  |-  ( ( k + B ) e. ZZ -> ( ( m e. ZZ |-> ( A / m ) ) ` ( k + B ) ) = ( A / ( k + B ) ) ) | 
						
							| 34 | 29 33 | syl |  |-  ( ( ph /\ k e. Z ) -> ( ( m e. ZZ |-> ( A / m ) ) ` ( k + B ) ) = ( A / ( k + B ) ) ) | 
						
							| 35 | 34 6 | eqtr4d |  |-  ( ( ph /\ k e. Z ) -> ( ( m e. ZZ |-> ( A / m ) ) ` ( k + B ) ) = ( F ` k ) ) | 
						
							| 36 | 1 2 4 5 23 35 | climshft2 |  |-  ( ph -> ( F ~~> 0 <-> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) ) | 
						
							| 37 | 22 36 | mpbird |  |-  ( ph -> F ~~> 0 ) |