Step |
Hyp |
Ref |
Expression |
1 |
|
dvdszrcl |
|- ( M || N -> ( M e. ZZ /\ N e. ZZ ) ) |
2 |
|
simpll |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> M e. ZZ ) |
3 |
|
oveq1 |
|- ( m = M -> ( m x. ( N / M ) ) = ( M x. ( N / M ) ) ) |
4 |
3
|
eqeq1d |
|- ( m = M -> ( ( m x. ( N / M ) ) = N <-> ( M x. ( N / M ) ) = N ) ) |
5 |
4
|
adantl |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ m = M ) -> ( ( m x. ( N / M ) ) = N <-> ( M x. ( N / M ) ) = N ) ) |
6 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
7 |
6
|
adantl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> N e. CC ) |
8 |
7
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> N e. CC ) |
9 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
10 |
9
|
adantr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> M e. CC ) |
11 |
10
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> M e. CC ) |
12 |
|
simpr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> M =/= 0 ) |
13 |
8 11 12
|
divcan2d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> ( M x. ( N / M ) ) = N ) |
14 |
2 5 13
|
rspcedvd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> E. m e. ZZ ( m x. ( N / M ) ) = N ) |
15 |
14
|
adantr |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> E. m e. ZZ ( m x. ( N / M ) ) = N ) |
16 |
|
simpr |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> M || N ) |
17 |
|
simpr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
18 |
17
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> N e. ZZ ) |
19 |
2 12 18
|
3jca |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) ) |
20 |
19
|
adantr |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) ) |
21 |
|
dvdsval2 |
|- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
22 |
20 21
|
syl |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
23 |
16 22
|
mpbid |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> ( N / M ) e. ZZ ) |
24 |
18
|
adantr |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> N e. ZZ ) |
25 |
|
divides |
|- ( ( ( N / M ) e. ZZ /\ N e. ZZ ) -> ( ( N / M ) || N <-> E. m e. ZZ ( m x. ( N / M ) ) = N ) ) |
26 |
23 24 25
|
syl2anc |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> ( ( N / M ) || N <-> E. m e. ZZ ( m x. ( N / M ) ) = N ) ) |
27 |
15 26
|
mpbird |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> ( N / M ) || N ) |
28 |
27
|
exp31 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M =/= 0 -> ( M || N -> ( N / M ) || N ) ) ) |
29 |
28
|
com3r |
|- ( M || N -> ( ( M e. ZZ /\ N e. ZZ ) -> ( M =/= 0 -> ( N / M ) || N ) ) ) |
30 |
1 29
|
mpd |
|- ( M || N -> ( M =/= 0 -> ( N / M ) || N ) ) |
31 |
30
|
imp |
|- ( ( M || N /\ M =/= 0 ) -> ( N / M ) || N ) |