Description: Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 30-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | recxpcld.1 | |- ( ph -> A e. RR ) |
|
recxpcld.2 | |- ( ph -> 0 <_ A ) |
||
divcxpd.4 | |- ( ph -> B e. RR+ ) |
||
divcxpd.5 | |- ( ph -> C e. CC ) |
||
Assertion | divcxpd | |- ( ph -> ( ( A / B ) ^c C ) = ( ( A ^c C ) / ( B ^c C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recxpcld.1 | |- ( ph -> A e. RR ) |
|
2 | recxpcld.2 | |- ( ph -> 0 <_ A ) |
|
3 | divcxpd.4 | |- ( ph -> B e. RR+ ) |
|
4 | divcxpd.5 | |- ( ph -> C e. CC ) |
|
5 | divcxp | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( ( A / B ) ^c C ) = ( ( A ^c C ) / ( B ^c C ) ) ) |
|
6 | 1 2 3 4 5 | syl211anc | |- ( ph -> ( ( A / B ) ^c C ) = ( ( A ^c C ) / ( B ^c C ) ) ) |