Metamath Proof Explorer


Theorem divcxpd

Description: Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1
|- ( ph -> A e. RR )
recxpcld.2
|- ( ph -> 0 <_ A )
divcxpd.4
|- ( ph -> B e. RR+ )
divcxpd.5
|- ( ph -> C e. CC )
Assertion divcxpd
|- ( ph -> ( ( A / B ) ^c C ) = ( ( A ^c C ) / ( B ^c C ) ) )

Proof

Step Hyp Ref Expression
1 recxpcld.1
 |-  ( ph -> A e. RR )
2 recxpcld.2
 |-  ( ph -> 0 <_ A )
3 divcxpd.4
 |-  ( ph -> B e. RR+ )
4 divcxpd.5
 |-  ( ph -> C e. CC )
5 divcxp
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( ( A / B ) ^c C ) = ( ( A ^c C ) / ( B ^c C ) ) )
6 1 2 3 4 5 syl211anc
 |-  ( ph -> ( ( A / B ) ^c C ) = ( ( A ^c C ) / ( B ^c C ) ) )