Step |
Hyp |
Ref |
Expression |
1 |
|
divnumden |
|- ( ( A e. ZZ /\ B e. NN ) -> ( ( numer ` ( A / B ) ) = ( A / ( A gcd B ) ) /\ ( denom ` ( A / B ) ) = ( B / ( A gcd B ) ) ) ) |
2 |
1
|
simprd |
|- ( ( A e. ZZ /\ B e. NN ) -> ( denom ` ( A / B ) ) = ( B / ( A gcd B ) ) ) |
3 |
|
simpl |
|- ( ( A e. ZZ /\ B e. NN ) -> A e. ZZ ) |
4 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
5 |
4
|
adantl |
|- ( ( A e. ZZ /\ B e. NN ) -> B e. ZZ ) |
6 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
7 |
6
|
neneqd |
|- ( B e. NN -> -. B = 0 ) |
8 |
7
|
adantl |
|- ( ( A e. ZZ /\ B e. NN ) -> -. B = 0 ) |
9 |
8
|
intnand |
|- ( ( A e. ZZ /\ B e. NN ) -> -. ( A = 0 /\ B = 0 ) ) |
10 |
|
gcdn0cl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
11 |
3 5 9 10
|
syl21anc |
|- ( ( A e. ZZ /\ B e. NN ) -> ( A gcd B ) e. NN ) |
12 |
11
|
nnge1d |
|- ( ( A e. ZZ /\ B e. NN ) -> 1 <_ ( A gcd B ) ) |
13 |
|
1red |
|- ( ( A e. ZZ /\ B e. NN ) -> 1 e. RR ) |
14 |
|
0lt1 |
|- 0 < 1 |
15 |
14
|
a1i |
|- ( ( A e. ZZ /\ B e. NN ) -> 0 < 1 ) |
16 |
11
|
nnred |
|- ( ( A e. ZZ /\ B e. NN ) -> ( A gcd B ) e. RR ) |
17 |
11
|
nngt0d |
|- ( ( A e. ZZ /\ B e. NN ) -> 0 < ( A gcd B ) ) |
18 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
19 |
18
|
adantl |
|- ( ( A e. ZZ /\ B e. NN ) -> B e. RR ) |
20 |
|
nngt0 |
|- ( B e. NN -> 0 < B ) |
21 |
20
|
adantl |
|- ( ( A e. ZZ /\ B e. NN ) -> 0 < B ) |
22 |
|
lediv2 |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( ( A gcd B ) e. RR /\ 0 < ( A gcd B ) ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 <_ ( A gcd B ) <-> ( B / ( A gcd B ) ) <_ ( B / 1 ) ) ) |
23 |
13 15 16 17 19 21 22
|
syl222anc |
|- ( ( A e. ZZ /\ B e. NN ) -> ( 1 <_ ( A gcd B ) <-> ( B / ( A gcd B ) ) <_ ( B / 1 ) ) ) |
24 |
12 23
|
mpbid |
|- ( ( A e. ZZ /\ B e. NN ) -> ( B / ( A gcd B ) ) <_ ( B / 1 ) ) |
25 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
26 |
25
|
adantl |
|- ( ( A e. ZZ /\ B e. NN ) -> B e. CC ) |
27 |
26
|
div1d |
|- ( ( A e. ZZ /\ B e. NN ) -> ( B / 1 ) = B ) |
28 |
24 27
|
breqtrd |
|- ( ( A e. ZZ /\ B e. NN ) -> ( B / ( A gcd B ) ) <_ B ) |
29 |
2 28
|
eqbrtrd |
|- ( ( A e. ZZ /\ B e. NN ) -> ( denom ` ( A / B ) ) <_ B ) |