Metamath Proof Explorer


Theorem divdiri

Description: Distribution of division over addition. (Contributed by NM, 16-Feb-1995)

Ref Expression
Hypotheses divclz.1
|- A e. CC
divclz.2
|- B e. CC
divmulz.3
|- C e. CC
divass.4
|- C =/= 0
Assertion divdiri
|- ( ( A + B ) / C ) = ( ( A / C ) + ( B / C ) )

Proof

Step Hyp Ref Expression
1 divclz.1
 |-  A e. CC
2 divclz.2
 |-  B e. CC
3 divmulz.3
 |-  C e. CC
4 divass.4
 |-  C =/= 0
5 1 2 3 divdirzi
 |-  ( C =/= 0 -> ( ( A + B ) / C ) = ( ( A / C ) + ( B / C ) ) )
6 4 5 ax-mp
 |-  ( ( A + B ) / C ) = ( ( A / C ) + ( B / C ) )