Metamath Proof Explorer


Theorem divdirzi

Description: Distribution of division over addition. (Contributed by NM, 31-Jul-2004)

Ref Expression
Hypotheses divclz.1
|- A e. CC
divclz.2
|- B e. CC
divmulz.3
|- C e. CC
Assertion divdirzi
|- ( C =/= 0 -> ( ( A + B ) / C ) = ( ( A / C ) + ( B / C ) ) )

Proof

Step Hyp Ref Expression
1 divclz.1
 |-  A e. CC
2 divclz.2
 |-  B e. CC
3 divmulz.3
 |-  C e. CC
4 divdir
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A + B ) / C ) = ( ( A / C ) + ( B / C ) ) )
5 1 2 4 mp3an12
 |-  ( ( C e. CC /\ C =/= 0 ) -> ( ( A + B ) / C ) = ( ( A / C ) + ( B / C ) ) )
6 3 5 mpan
 |-  ( C =/= 0 -> ( ( A + B ) / C ) = ( ( A / C ) + ( B / C ) ) )