| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 3 |
1 2
|
pm3.2i |
|- ( 1 e. CC /\ 1 =/= 0 ) |
| 4 |
|
divdivdiv |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( 1 e. CC /\ 1 =/= 0 ) ) ) -> ( ( A / B ) / ( C / 1 ) ) = ( ( A x. 1 ) / ( B x. C ) ) ) |
| 5 |
3 4
|
mpanr2 |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / ( C / 1 ) ) = ( ( A x. 1 ) / ( B x. C ) ) ) |
| 6 |
5
|
3impa |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / ( C / 1 ) ) = ( ( A x. 1 ) / ( B x. C ) ) ) |
| 7 |
|
div1 |
|- ( C e. CC -> ( C / 1 ) = C ) |
| 8 |
7
|
oveq2d |
|- ( C e. CC -> ( ( A / B ) / ( C / 1 ) ) = ( ( A / B ) / C ) ) |
| 9 |
8
|
ad2antrl |
|- ( ( ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / ( C / 1 ) ) = ( ( A / B ) / C ) ) |
| 10 |
9
|
3adant1 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / ( C / 1 ) ) = ( ( A / B ) / C ) ) |
| 11 |
|
mulrid |
|- ( A e. CC -> ( A x. 1 ) = A ) |
| 12 |
11
|
oveq1d |
|- ( A e. CC -> ( ( A x. 1 ) / ( B x. C ) ) = ( A / ( B x. C ) ) ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. 1 ) / ( B x. C ) ) = ( A / ( B x. C ) ) ) |
| 14 |
6 10 13
|
3eqtr3d |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / C ) = ( A / ( B x. C ) ) ) |