Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
|- 1 e. CC |
2 |
|
ax-1ne0 |
|- 1 =/= 0 |
3 |
1 2
|
pm3.2i |
|- ( 1 e. CC /\ 1 =/= 0 ) |
4 |
|
divdivdiv |
|- ( ( ( A e. CC /\ ( 1 e. CC /\ 1 =/= 0 ) ) /\ ( ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( ( A / 1 ) / ( B / C ) ) = ( ( A x. C ) / ( 1 x. B ) ) ) |
5 |
3 4
|
mpanl2 |
|- ( ( A e. CC /\ ( ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( ( A / 1 ) / ( B / C ) ) = ( ( A x. C ) / ( 1 x. B ) ) ) |
6 |
5
|
3impb |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / 1 ) / ( B / C ) ) = ( ( A x. C ) / ( 1 x. B ) ) ) |
7 |
|
div1 |
|- ( A e. CC -> ( A / 1 ) = A ) |
8 |
7
|
3ad2ant1 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / 1 ) = A ) |
9 |
8
|
oveq1d |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / 1 ) / ( B / C ) ) = ( A / ( B / C ) ) ) |
10 |
|
mulid2 |
|- ( B e. CC -> ( 1 x. B ) = B ) |
11 |
10
|
ad2antrl |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 x. B ) = B ) |
12 |
11
|
3adant3 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( 1 x. B ) = B ) |
13 |
12
|
oveq2d |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. C ) / ( 1 x. B ) ) = ( ( A x. C ) / B ) ) |
14 |
6 9 13
|
3eqtr3d |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / ( B / C ) ) = ( ( A x. C ) / B ) ) |