Step |
Hyp |
Ref |
Expression |
1 |
|
reccl |
|- ( ( B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC ) |
2 |
|
div23 |
|- ( ( A e. CC /\ ( 1 / B ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. ( 1 / B ) ) / C ) = ( ( A / C ) x. ( 1 / B ) ) ) |
3 |
1 2
|
syl3an2 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. ( 1 / B ) ) / C ) = ( ( A / C ) x. ( 1 / B ) ) ) |
4 |
|
divrec |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
5 |
4
|
3expb |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
6 |
5
|
3adant3 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
7 |
6
|
oveq1d |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / C ) = ( ( A x. ( 1 / B ) ) / C ) ) |
8 |
|
divcl |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
9 |
8
|
3expb |
|- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
10 |
|
divrec |
|- ( ( ( A / C ) e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / C ) / B ) = ( ( A / C ) x. ( 1 / B ) ) ) |
11 |
9 10
|
syl3an1 |
|- ( ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) /\ B e. CC /\ B =/= 0 ) -> ( ( A / C ) / B ) = ( ( A / C ) x. ( 1 / B ) ) ) |
12 |
11
|
3expb |
|- ( ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / C ) / B ) = ( ( A / C ) x. ( 1 / B ) ) ) |
13 |
12
|
3impa |
|- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / C ) / B ) = ( ( A / C ) x. ( 1 / B ) ) ) |
14 |
13
|
3com23 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) / B ) = ( ( A / C ) x. ( 1 / B ) ) ) |
15 |
3 7 14
|
3eqtr4d |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / B ) / C ) = ( ( A / C ) / B ) ) |