Metamath Proof Explorer


Theorem divdiv32i

Description: Swap denominators in a division. (Contributed by NM, 15-Sep-1999)

Ref Expression
Hypotheses divclz.1
|- A e. CC
divclz.2
|- B e. CC
divmulz.3
|- C e. CC
divmul.4
|- B =/= 0
divdiv23.5
|- C =/= 0
Assertion divdiv32i
|- ( ( A / B ) / C ) = ( ( A / C ) / B )

Proof

Step Hyp Ref Expression
1 divclz.1
 |-  A e. CC
2 divclz.2
 |-  B e. CC
3 divmulz.3
 |-  C e. CC
4 divmul.4
 |-  B =/= 0
5 divdiv23.5
 |-  C =/= 0
6 1 2 3 divdiv23zi
 |-  ( ( B =/= 0 /\ C =/= 0 ) -> ( ( A / B ) / C ) = ( ( A / C ) / B ) )
7 4 5 6 mp2an
 |-  ( ( A / B ) / C ) = ( ( A / C ) / B )