Step |
Hyp |
Ref |
Expression |
1 |
|
simprrl |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> D e. CC ) |
2 |
|
simprll |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> C e. CC ) |
3 |
|
simprlr |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> C =/= 0 ) |
4 |
|
divcl |
|- ( ( D e. CC /\ C e. CC /\ C =/= 0 ) -> ( D / C ) e. CC ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( D / C ) e. CC ) |
6 |
|
simpll |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> A e. CC ) |
7 |
|
simplrl |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> B e. CC ) |
8 |
|
simplrr |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> B =/= 0 ) |
9 |
|
divcl |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
10 |
6 7 8 9
|
syl3anc |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( A / B ) e. CC ) |
11 |
5 10
|
mulcomd |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( D / C ) x. ( A / B ) ) = ( ( A / B ) x. ( D / C ) ) ) |
12 |
|
simplr |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( B e. CC /\ B =/= 0 ) ) |
13 |
|
simprl |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C e. CC /\ C =/= 0 ) ) |
14 |
|
divmuldiv |
|- ( ( ( A e. CC /\ D e. CC ) /\ ( ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( ( A / B ) x. ( D / C ) ) = ( ( A x. D ) / ( B x. C ) ) ) |
15 |
6 1 12 13 14
|
syl22anc |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / B ) x. ( D / C ) ) = ( ( A x. D ) / ( B x. C ) ) ) |
16 |
11 15
|
eqtrd |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( D / C ) x. ( A / B ) ) = ( ( A x. D ) / ( B x. C ) ) ) |
17 |
16
|
oveq2d |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C / D ) x. ( ( D / C ) x. ( A / B ) ) ) = ( ( C / D ) x. ( ( A x. D ) / ( B x. C ) ) ) ) |
18 |
|
simprr |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( D e. CC /\ D =/= 0 ) ) |
19 |
|
divmuldiv |
|- ( ( ( C e. CC /\ D e. CC ) /\ ( ( D e. CC /\ D =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( ( C / D ) x. ( D / C ) ) = ( ( C x. D ) / ( D x. C ) ) ) |
20 |
2 1 18 13 19
|
syl22anc |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C / D ) x. ( D / C ) ) = ( ( C x. D ) / ( D x. C ) ) ) |
21 |
2 1
|
mulcomd |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C x. D ) = ( D x. C ) ) |
22 |
21
|
oveq1d |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C x. D ) / ( D x. C ) ) = ( ( D x. C ) / ( D x. C ) ) ) |
23 |
1 2
|
mulcld |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( D x. C ) e. CC ) |
24 |
|
simprrr |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> D =/= 0 ) |
25 |
1 2 24 3
|
mulne0d |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( D x. C ) =/= 0 ) |
26 |
|
divid |
|- ( ( ( D x. C ) e. CC /\ ( D x. C ) =/= 0 ) -> ( ( D x. C ) / ( D x. C ) ) = 1 ) |
27 |
23 25 26
|
syl2anc |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( D x. C ) / ( D x. C ) ) = 1 ) |
28 |
22 27
|
eqtrd |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C x. D ) / ( D x. C ) ) = 1 ) |
29 |
20 28
|
eqtrd |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C / D ) x. ( D / C ) ) = 1 ) |
30 |
29
|
oveq1d |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( C / D ) x. ( D / C ) ) x. ( A / B ) ) = ( 1 x. ( A / B ) ) ) |
31 |
|
divcl |
|- ( ( C e. CC /\ D e. CC /\ D =/= 0 ) -> ( C / D ) e. CC ) |
32 |
2 1 24 31
|
syl3anc |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C / D ) e. CC ) |
33 |
32 5 10
|
mulassd |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( C / D ) x. ( D / C ) ) x. ( A / B ) ) = ( ( C / D ) x. ( ( D / C ) x. ( A / B ) ) ) ) |
34 |
10
|
mulid2d |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( 1 x. ( A / B ) ) = ( A / B ) ) |
35 |
30 33 34
|
3eqtr3d |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C / D ) x. ( ( D / C ) x. ( A / B ) ) ) = ( A / B ) ) |
36 |
17 35
|
eqtr3d |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C / D ) x. ( ( A x. D ) / ( B x. C ) ) ) = ( A / B ) ) |
37 |
6 1
|
mulcld |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( A x. D ) e. CC ) |
38 |
7 2
|
mulcld |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( B x. C ) e. CC ) |
39 |
|
mulne0 |
|- ( ( ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( B x. C ) =/= 0 ) |
40 |
39
|
ad2ant2lr |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( B x. C ) =/= 0 ) |
41 |
|
divcl |
|- ( ( ( A x. D ) e. CC /\ ( B x. C ) e. CC /\ ( B x. C ) =/= 0 ) -> ( ( A x. D ) / ( B x. C ) ) e. CC ) |
42 |
37 38 40 41
|
syl3anc |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A x. D ) / ( B x. C ) ) e. CC ) |
43 |
|
divne0 |
|- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C / D ) =/= 0 ) |
44 |
43
|
adantl |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C / D ) =/= 0 ) |
45 |
|
divmul |
|- ( ( ( A / B ) e. CC /\ ( ( A x. D ) / ( B x. C ) ) e. CC /\ ( ( C / D ) e. CC /\ ( C / D ) =/= 0 ) ) -> ( ( ( A / B ) / ( C / D ) ) = ( ( A x. D ) / ( B x. C ) ) <-> ( ( C / D ) x. ( ( A x. D ) / ( B x. C ) ) ) = ( A / B ) ) ) |
46 |
10 42 32 44 45
|
syl112anc |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A / B ) / ( C / D ) ) = ( ( A x. D ) / ( B x. C ) ) <-> ( ( C / D ) x. ( ( A x. D ) / ( B x. C ) ) ) = ( A / B ) ) ) |
47 |
36 46
|
mpbird |
|- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / B ) / ( C / D ) ) = ( ( A x. D ) / ( B x. C ) ) ) |