Description: Division of two ratios. Theorem I.15 of Apostol p. 18. (Contributed by NM, 22-Feb-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divclz.1 | |- A e. CC |
|
divclz.2 | |- B e. CC |
||
divmulz.3 | |- C e. CC |
||
divmuldiv.4 | |- D e. CC |
||
divmuldiv.5 | |- B =/= 0 |
||
divmuldiv.6 | |- D =/= 0 |
||
divdivdiv.7 | |- C =/= 0 |
||
Assertion | divdivdivi | |- ( ( A / B ) / ( C / D ) ) = ( ( A x. D ) / ( B x. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divclz.1 | |- A e. CC |
|
2 | divclz.2 | |- B e. CC |
|
3 | divmulz.3 | |- C e. CC |
|
4 | divmuldiv.4 | |- D e. CC |
|
5 | divmuldiv.5 | |- B =/= 0 |
|
6 | divmuldiv.6 | |- D =/= 0 |
|
7 | divdivdiv.7 | |- C =/= 0 |
|
8 | 2 5 | pm3.2i | |- ( B e. CC /\ B =/= 0 ) |
9 | 3 7 | pm3.2i | |- ( C e. CC /\ C =/= 0 ) |
10 | 4 6 | pm3.2i | |- ( D e. CC /\ D =/= 0 ) |
11 | divdivdiv | |- ( ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / B ) / ( C / D ) ) = ( ( A x. D ) / ( B x. C ) ) ) |
|
12 | 1 8 9 10 11 | mp4an | |- ( ( A / B ) / ( C / D ) ) = ( ( A x. D ) / ( B x. C ) ) |