| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
|
divmul2 |
|- ( ( A e. CC /\ 1 e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = 1 <-> A = ( B x. 1 ) ) ) |
| 3 |
1 2
|
mp3an2 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = 1 <-> A = ( B x. 1 ) ) ) |
| 4 |
3
|
3impb |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = 1 <-> A = ( B x. 1 ) ) ) |
| 5 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B e. CC ) |
| 6 |
5
|
mulridd |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. 1 ) = B ) |
| 7 |
6
|
eqeq2d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A = ( B x. 1 ) <-> A = B ) ) |
| 8 |
4 7
|
bitrd |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = 1 <-> A = B ) ) |