Metamath Proof Explorer


Theorem diveq1ad

Description: The quotient of two complex numbers is one iff they are equal. Deduction form of diveq1 . Generalization of diveq1d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses div1d.1
|- ( ph -> A e. CC )
divcld.2
|- ( ph -> B e. CC )
divcld.3
|- ( ph -> B =/= 0 )
Assertion diveq1ad
|- ( ph -> ( ( A / B ) = 1 <-> A = B ) )

Proof

Step Hyp Ref Expression
1 div1d.1
 |-  ( ph -> A e. CC )
2 divcld.2
 |-  ( ph -> B e. CC )
3 divcld.3
 |-  ( ph -> B =/= 0 )
4 diveq1
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = 1 <-> A = B ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( ( A / B ) = 1 <-> A = B ) )