| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0nndivcl |
|- ( ( A e. NN0 /\ B e. NN ) -> ( A / B ) e. RR ) |
| 2 |
1
|
recnd |
|- ( ( A e. NN0 /\ B e. NN ) -> ( A / B ) e. CC ) |
| 3 |
|
addlid |
|- ( ( A / B ) e. CC -> ( 0 + ( A / B ) ) = ( A / B ) ) |
| 4 |
3
|
eqcomd |
|- ( ( A / B ) e. CC -> ( A / B ) = ( 0 + ( A / B ) ) ) |
| 5 |
2 4
|
syl |
|- ( ( A e. NN0 /\ B e. NN ) -> ( A / B ) = ( 0 + ( A / B ) ) ) |
| 6 |
5
|
fveqeq2d |
|- ( ( A e. NN0 /\ B e. NN ) -> ( ( |_ ` ( A / B ) ) = 0 <-> ( |_ ` ( 0 + ( A / B ) ) ) = 0 ) ) |
| 7 |
|
0z |
|- 0 e. ZZ |
| 8 |
|
flbi2 |
|- ( ( 0 e. ZZ /\ ( A / B ) e. RR ) -> ( ( |_ ` ( 0 + ( A / B ) ) ) = 0 <-> ( 0 <_ ( A / B ) /\ ( A / B ) < 1 ) ) ) |
| 9 |
7 1 8
|
sylancr |
|- ( ( A e. NN0 /\ B e. NN ) -> ( ( |_ ` ( 0 + ( A / B ) ) ) = 0 <-> ( 0 <_ ( A / B ) /\ ( A / B ) < 1 ) ) ) |
| 10 |
|
nn0ge0div |
|- ( ( A e. NN0 /\ B e. NN ) -> 0 <_ ( A / B ) ) |
| 11 |
10
|
biantrurd |
|- ( ( A e. NN0 /\ B e. NN ) -> ( ( A / B ) < 1 <-> ( 0 <_ ( A / B ) /\ ( A / B ) < 1 ) ) ) |
| 12 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
| 13 |
|
nnrp |
|- ( B e. NN -> B e. RR+ ) |
| 14 |
|
divlt1lt |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) < 1 <-> A < B ) ) |
| 15 |
12 13 14
|
syl2an |
|- ( ( A e. NN0 /\ B e. NN ) -> ( ( A / B ) < 1 <-> A < B ) ) |
| 16 |
11 15
|
bitr3d |
|- ( ( A e. NN0 /\ B e. NN ) -> ( ( 0 <_ ( A / B ) /\ ( A / B ) < 1 ) <-> A < B ) ) |
| 17 |
6 9 16
|
3bitrrd |
|- ( ( A e. NN0 /\ B e. NN ) -> ( A < B <-> ( |_ ` ( A / B ) ) = 0 ) ) |