| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 2 |
1
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 3 |
|
gcdcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
| 4 |
3
|
nn0zd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
| 5 |
|
simpl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
| 6 |
4 5
|
jca |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) e. ZZ /\ A e. ZZ ) ) |
| 7 |
6
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) e. ZZ /\ A e. ZZ ) ) |
| 8 |
|
divides |
|- ( ( ( A gcd B ) e. ZZ /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> E. a e. ZZ ( a x. ( A gcd B ) ) = A ) ) |
| 9 |
7 8
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) || A <-> E. a e. ZZ ( a x. ( A gcd B ) ) = A ) ) |
| 10 |
|
simpr |
|- ( ( A e. ZZ /\ B e. ZZ ) -> B e. ZZ ) |
| 11 |
4 10
|
jca |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) e. ZZ /\ B e. ZZ ) ) |
| 12 |
11
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) e. ZZ /\ B e. ZZ ) ) |
| 13 |
|
divides |
|- ( ( ( A gcd B ) e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || B <-> E. b e. ZZ ( b x. ( A gcd B ) ) = B ) ) |
| 14 |
12 13
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) || B <-> E. b e. ZZ ( b x. ( A gcd B ) ) = B ) ) |
| 15 |
9 14
|
anbi12d |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) <-> ( E. a e. ZZ ( a x. ( A gcd B ) ) = A /\ E. b e. ZZ ( b x. ( A gcd B ) ) = B ) ) ) |
| 16 |
|
bezout |
|- ( ( A e. ZZ /\ B e. ZZ ) -> E. m e. ZZ E. n e. ZZ ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) ) |
| 17 |
16
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> E. m e. ZZ E. n e. ZZ ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) ) |
| 18 |
|
oveq1 |
|- ( ( a x. ( A gcd B ) ) = A -> ( ( a x. ( A gcd B ) ) x. m ) = ( A x. m ) ) |
| 19 |
|
oveq1 |
|- ( ( b x. ( A gcd B ) ) = B -> ( ( b x. ( A gcd B ) ) x. n ) = ( B x. n ) ) |
| 20 |
18 19
|
oveqan12rd |
|- ( ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) -> ( ( ( a x. ( A gcd B ) ) x. m ) + ( ( b x. ( A gcd B ) ) x. n ) ) = ( ( A x. m ) + ( B x. n ) ) ) |
| 21 |
20
|
eqeq2d |
|- ( ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) -> ( ( A gcd B ) = ( ( ( a x. ( A gcd B ) ) x. m ) + ( ( b x. ( A gcd B ) ) x. n ) ) <-> ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) ) ) |
| 22 |
21
|
bicomd |
|- ( ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) <-> ( A gcd B ) = ( ( ( a x. ( A gcd B ) ) x. m ) + ( ( b x. ( A gcd B ) ) x. n ) ) ) ) |
| 23 |
|
simpl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> a e. ZZ ) |
| 24 |
23
|
zcnd |
|- ( ( a e. ZZ /\ b e. ZZ ) -> a e. CC ) |
| 25 |
24
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. CC ) |
| 26 |
3
|
nn0cnd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. CC ) |
| 27 |
26
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) e. CC ) |
| 28 |
27
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( A gcd B ) e. CC ) |
| 29 |
|
simpl |
|- ( ( m e. ZZ /\ n e. ZZ ) -> m e. ZZ ) |
| 30 |
29
|
zcnd |
|- ( ( m e. ZZ /\ n e. ZZ ) -> m e. CC ) |
| 31 |
30
|
ad2antlr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> m e. CC ) |
| 32 |
25 28 31
|
mul32d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a x. ( A gcd B ) ) x. m ) = ( ( a x. m ) x. ( A gcd B ) ) ) |
| 33 |
|
simpr |
|- ( ( a e. ZZ /\ b e. ZZ ) -> b e. ZZ ) |
| 34 |
33
|
zcnd |
|- ( ( a e. ZZ /\ b e. ZZ ) -> b e. CC ) |
| 35 |
34
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. CC ) |
| 36 |
|
simpr |
|- ( ( m e. ZZ /\ n e. ZZ ) -> n e. ZZ ) |
| 37 |
36
|
zcnd |
|- ( ( m e. ZZ /\ n e. ZZ ) -> n e. CC ) |
| 38 |
37
|
ad2antlr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> n e. CC ) |
| 39 |
35 28 38
|
mul32d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. ( A gcd B ) ) x. n ) = ( ( b x. n ) x. ( A gcd B ) ) ) |
| 40 |
32 39
|
oveq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( a x. ( A gcd B ) ) x. m ) + ( ( b x. ( A gcd B ) ) x. n ) ) = ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) ) |
| 41 |
40
|
eqeq2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A gcd B ) = ( ( ( a x. ( A gcd B ) ) x. m ) + ( ( b x. ( A gcd B ) ) x. n ) ) <-> ( A gcd B ) = ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) ) ) |
| 42 |
23
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. ZZ ) |
| 43 |
29
|
ad2antlr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> m e. ZZ ) |
| 44 |
42 43
|
zmulcld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a x. m ) e. ZZ ) |
| 45 |
4
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) e. ZZ ) |
| 46 |
45
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( A gcd B ) e. ZZ ) |
| 47 |
44 46
|
zmulcld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a x. m ) x. ( A gcd B ) ) e. ZZ ) |
| 48 |
33
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. ZZ ) |
| 49 |
36
|
ad2antlr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> n e. ZZ ) |
| 50 |
48 49
|
zmulcld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( b x. n ) e. ZZ ) |
| 51 |
3
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) e. NN0 ) |
| 52 |
51
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( A gcd B ) e. NN0 ) |
| 53 |
52
|
nn0zd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( A gcd B ) e. ZZ ) |
| 54 |
50 53
|
zmulcld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. n ) x. ( A gcd B ) ) e. ZZ ) |
| 55 |
47 54
|
zaddcld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) e. ZZ ) |
| 56 |
55
|
zcnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) e. CC ) |
| 57 |
|
gcd2n0cl |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) e. NN ) |
| 58 |
|
nnrp |
|- ( ( A gcd B ) e. NN -> ( A gcd B ) e. RR+ ) |
| 59 |
58
|
rpcnne0d |
|- ( ( A gcd B ) e. NN -> ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) |
| 60 |
57 59
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) |
| 61 |
60
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) |
| 62 |
|
div11 |
|- ( ( ( A gcd B ) e. CC /\ ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) e. CC /\ ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) -> ( ( ( A gcd B ) / ( A gcd B ) ) = ( ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) / ( A gcd B ) ) <-> ( A gcd B ) = ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) ) ) |
| 63 |
28 56 61 62
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( A gcd B ) / ( A gcd B ) ) = ( ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) / ( A gcd B ) ) <-> ( A gcd B ) = ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) ) ) |
| 64 |
|
divid |
|- ( ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) -> ( ( A gcd B ) / ( A gcd B ) ) = 1 ) |
| 65 |
61 64
|
syl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A gcd B ) / ( A gcd B ) ) = 1 ) |
| 66 |
47
|
zcnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a x. m ) x. ( A gcd B ) ) e. CC ) |
| 67 |
54
|
zcnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. n ) x. ( A gcd B ) ) e. CC ) |
| 68 |
|
divdir |
|- ( ( ( ( a x. m ) x. ( A gcd B ) ) e. CC /\ ( ( b x. n ) x. ( A gcd B ) ) e. CC /\ ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) -> ( ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) / ( A gcd B ) ) = ( ( ( ( a x. m ) x. ( A gcd B ) ) / ( A gcd B ) ) + ( ( ( b x. n ) x. ( A gcd B ) ) / ( A gcd B ) ) ) ) |
| 69 |
66 67 61 68
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) / ( A gcd B ) ) = ( ( ( ( a x. m ) x. ( A gcd B ) ) / ( A gcd B ) ) + ( ( ( b x. n ) x. ( A gcd B ) ) / ( A gcd B ) ) ) ) |
| 70 |
44
|
zcnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a x. m ) e. CC ) |
| 71 |
51
|
nn0cnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) e. CC ) |
| 72 |
71
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( A gcd B ) e. CC ) |
| 73 |
57
|
nnne0d |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) =/= 0 ) |
| 74 |
73
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( A gcd B ) =/= 0 ) |
| 75 |
70 72 74
|
divcan4d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( a x. m ) x. ( A gcd B ) ) / ( A gcd B ) ) = ( a x. m ) ) |
| 76 |
50
|
zcnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( b x. n ) e. CC ) |
| 77 |
76 28 74
|
divcan4d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( b x. n ) x. ( A gcd B ) ) / ( A gcd B ) ) = ( b x. n ) ) |
| 78 |
75 77
|
oveq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( ( a x. m ) x. ( A gcd B ) ) / ( A gcd B ) ) + ( ( ( b x. n ) x. ( A gcd B ) ) / ( A gcd B ) ) ) = ( ( a x. m ) + ( b x. n ) ) ) |
| 79 |
69 78
|
eqtrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) / ( A gcd B ) ) = ( ( a x. m ) + ( b x. n ) ) ) |
| 80 |
65 79
|
eqeq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( A gcd B ) / ( A gcd B ) ) = ( ( ( ( a x. m ) x. ( A gcd B ) ) + ( ( b x. n ) x. ( A gcd B ) ) ) / ( A gcd B ) ) <-> 1 = ( ( a x. m ) + ( b x. n ) ) ) ) |
| 81 |
41 63 80
|
3bitr2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A gcd B ) = ( ( ( a x. ( A gcd B ) ) x. m ) + ( ( b x. ( A gcd B ) ) x. n ) ) <-> 1 = ( ( a x. m ) + ( b x. n ) ) ) ) |
| 82 |
22 81
|
sylan9bbr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) <-> 1 = ( ( a x. m ) + ( b x. n ) ) ) ) |
| 83 |
|
eqcom |
|- ( 1 = ( ( a x. m ) + ( b x. n ) ) <-> ( ( a x. m ) + ( b x. n ) ) = 1 ) |
| 84 |
|
simpr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( m e. ZZ /\ n e. ZZ ) ) |
| 85 |
84
|
anim1ci |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a e. ZZ /\ b e. ZZ ) /\ ( m e. ZZ /\ n e. ZZ ) ) ) |
| 86 |
|
bezoutr1 |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( ( a x. m ) + ( b x. n ) ) = 1 -> ( a gcd b ) = 1 ) ) |
| 87 |
85 86
|
syl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( a x. m ) + ( b x. n ) ) = 1 -> ( a gcd b ) = 1 ) ) |
| 88 |
87
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( ( ( a x. m ) + ( b x. n ) ) = 1 -> ( a gcd b ) = 1 ) ) |
| 89 |
83 88
|
biimtrid |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( 1 = ( ( a x. m ) + ( b x. n ) ) -> ( a gcd b ) = 1 ) ) |
| 90 |
|
simpll1 |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> A e. ZZ ) |
| 91 |
90
|
zcnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> A e. CC ) |
| 92 |
|
divmul3 |
|- ( ( A e. CC /\ a e. CC /\ ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) -> ( ( A / ( A gcd B ) ) = a <-> A = ( a x. ( A gcd B ) ) ) ) |
| 93 |
91 25 61 92
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A / ( A gcd B ) ) = a <-> A = ( a x. ( A gcd B ) ) ) ) |
| 94 |
|
eqcom |
|- ( a = ( A / ( A gcd B ) ) <-> ( A / ( A gcd B ) ) = a ) |
| 95 |
|
eqcom |
|- ( ( a x. ( A gcd B ) ) = A <-> A = ( a x. ( A gcd B ) ) ) |
| 96 |
93 94 95
|
3bitr4g |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a = ( A / ( A gcd B ) ) <-> ( a x. ( A gcd B ) ) = A ) ) |
| 97 |
96
|
biimprd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a x. ( A gcd B ) ) = A -> a = ( A / ( A gcd B ) ) ) ) |
| 98 |
97
|
a1d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> a = ( A / ( A gcd B ) ) ) ) ) |
| 99 |
98
|
imp32 |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> a = ( A / ( A gcd B ) ) ) |
| 100 |
|
simp2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> B e. ZZ ) |
| 101 |
100
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> B e. CC ) |
| 102 |
101
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> B e. CC ) |
| 103 |
|
divmul3 |
|- ( ( B e. CC /\ b e. CC /\ ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) -> ( ( B / ( A gcd B ) ) = b <-> B = ( b x. ( A gcd B ) ) ) ) |
| 104 |
102 35 61 103
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( B / ( A gcd B ) ) = b <-> B = ( b x. ( A gcd B ) ) ) ) |
| 105 |
|
eqcom |
|- ( b = ( B / ( A gcd B ) ) <-> ( B / ( A gcd B ) ) = b ) |
| 106 |
|
eqcom |
|- ( ( b x. ( A gcd B ) ) = B <-> B = ( b x. ( A gcd B ) ) ) |
| 107 |
104 105 106
|
3bitr4g |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( b = ( B / ( A gcd B ) ) <-> ( b x. ( A gcd B ) ) = B ) ) |
| 108 |
107
|
biimprd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. ( A gcd B ) ) = B -> b = ( B / ( A gcd B ) ) ) ) |
| 109 |
108
|
a1dd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> b = ( B / ( A gcd B ) ) ) ) ) |
| 110 |
109
|
imp32 |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> b = ( B / ( A gcd B ) ) ) |
| 111 |
99 110
|
oveq12d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( a gcd b ) = ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) |
| 112 |
111
|
eqeq1d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( ( a gcd b ) = 1 <-> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) |
| 113 |
89 112
|
sylibd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( 1 = ( ( a x. m ) + ( b x. n ) ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) |
| 114 |
82 113
|
sylbid |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( b x. ( A gcd B ) ) = B /\ ( a x. ( A gcd B ) ) = A ) ) -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) |
| 115 |
114
|
exp32 |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) |
| 116 |
115
|
com34 |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) |
| 117 |
116
|
com23 |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) |
| 118 |
117
|
ex |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( a e. ZZ /\ b e. ZZ ) -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) ) |
| 119 |
118
|
com23 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( a e. ZZ /\ b e. ZZ ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) ) |
| 120 |
119
|
rexlimdvva |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( E. m e. ZZ E. n e. ZZ ( A gcd B ) = ( ( A x. m ) + ( B x. n ) ) -> ( ( a e. ZZ /\ b e. ZZ ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) ) |
| 121 |
17 120
|
mpd |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( a e. ZZ /\ b e. ZZ ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) ) |
| 122 |
121
|
impl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) |
| 123 |
122
|
rexlimdva |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ a e. ZZ ) -> ( E. b e. ZZ ( b x. ( A gcd B ) ) = B -> ( ( a x. ( A gcd B ) ) = A -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) |
| 124 |
123
|
com23 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) /\ a e. ZZ ) -> ( ( a x. ( A gcd B ) ) = A -> ( E. b e. ZZ ( b x. ( A gcd B ) ) = B -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) |
| 125 |
124
|
rexlimdva |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( E. a e. ZZ ( a x. ( A gcd B ) ) = A -> ( E. b e. ZZ ( b x. ( A gcd B ) ) = B -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) ) |
| 126 |
125
|
impd |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( E. a e. ZZ ( a x. ( A gcd B ) ) = A /\ E. b e. ZZ ( b x. ( A gcd B ) ) = B ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) |
| 127 |
15 126
|
sylbid |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) ) |
| 128 |
2 127
|
mpd |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |