Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( B e. ZZ /\ B =/= 0 ) -> B e. ZZ ) |
2 |
1
|
anim2i |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A e. ZZ /\ B e. ZZ ) ) |
3 |
|
zeqzmulgcd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> E. a e. ZZ A = ( a x. ( A gcd B ) ) ) |
4 |
2 3
|
syl |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> E. a e. ZZ A = ( a x. ( A gcd B ) ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> E. a e. ZZ A = ( a x. ( A gcd B ) ) ) |
6 |
|
zeqzmulgcd |
|- ( ( B e. ZZ /\ A e. ZZ ) -> E. b e. ZZ B = ( b x. ( B gcd A ) ) ) |
7 |
6
|
adantlr |
|- ( ( ( B e. ZZ /\ B =/= 0 ) /\ A e. ZZ ) -> E. b e. ZZ B = ( b x. ( B gcd A ) ) ) |
8 |
7
|
ancoms |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> E. b e. ZZ B = ( b x. ( B gcd A ) ) ) |
9 |
8
|
3adant3 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> E. b e. ZZ B = ( b x. ( B gcd A ) ) ) |
10 |
|
reeanv |
|- ( E. a e. ZZ E. b e. ZZ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) <-> ( E. a e. ZZ A = ( a x. ( A gcd B ) ) /\ E. b e. ZZ B = ( b x. ( B gcd A ) ) ) ) |
11 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
12 |
11
|
adantl |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) -> a e. CC ) |
13 |
|
gcdcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
14 |
2 13
|
syl |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A gcd B ) e. NN0 ) |
15 |
14
|
nn0cnd |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A gcd B ) e. CC ) |
16 |
15
|
3adant3 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) e. CC ) |
17 |
16
|
adantr |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) -> ( A gcd B ) e. CC ) |
18 |
12 17
|
mulcomd |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) -> ( a x. ( A gcd B ) ) = ( ( A gcd B ) x. a ) ) |
19 |
|
simp3 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> M = ( A gcd B ) ) |
20 |
19
|
eqcomd |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) = M ) |
21 |
20
|
oveq1d |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( ( A gcd B ) x. a ) = ( M x. a ) ) |
22 |
21
|
adantr |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) -> ( ( A gcd B ) x. a ) = ( M x. a ) ) |
23 |
18 22
|
eqtrd |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) -> ( a x. ( A gcd B ) ) = ( M x. a ) ) |
24 |
23
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) /\ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) ) -> ( a x. ( A gcd B ) ) = ( M x. a ) ) |
25 |
|
eqeq1 |
|- ( A = ( a x. ( A gcd B ) ) -> ( A = ( M x. a ) <-> ( a x. ( A gcd B ) ) = ( M x. a ) ) ) |
26 |
25
|
adantr |
|- ( ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) -> ( A = ( M x. a ) <-> ( a x. ( A gcd B ) ) = ( M x. a ) ) ) |
27 |
26
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) /\ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) ) -> ( A = ( M x. a ) <-> ( a x. ( A gcd B ) ) = ( M x. a ) ) ) |
28 |
24 27
|
mpbird |
|- ( ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) /\ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) ) -> A = ( M x. a ) ) |
29 |
|
simpr |
|- ( ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) -> B = ( b x. ( B gcd A ) ) ) |
30 |
2
|
ancomd |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( B e. ZZ /\ A e. ZZ ) ) |
31 |
|
gcdcom |
|- ( ( B e. ZZ /\ A e. ZZ ) -> ( B gcd A ) = ( A gcd B ) ) |
32 |
30 31
|
syl |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( B gcd A ) = ( A gcd B ) ) |
33 |
32
|
3adant3 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( B gcd A ) = ( A gcd B ) ) |
34 |
33
|
oveq2d |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( b x. ( B gcd A ) ) = ( b x. ( A gcd B ) ) ) |
35 |
34
|
adantr |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( b x. ( B gcd A ) ) = ( b x. ( A gcd B ) ) ) |
36 |
|
zcn |
|- ( b e. ZZ -> b e. CC ) |
37 |
36
|
adantl |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> b e. CC ) |
38 |
14
|
3adant3 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) e. NN0 ) |
39 |
38
|
adantr |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( A gcd B ) e. NN0 ) |
40 |
39
|
nn0cnd |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( A gcd B ) e. CC ) |
41 |
37 40
|
mulcomd |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( b x. ( A gcd B ) ) = ( ( A gcd B ) x. b ) ) |
42 |
20
|
adantr |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( A gcd B ) = M ) |
43 |
42
|
oveq1d |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( ( A gcd B ) x. b ) = ( M x. b ) ) |
44 |
35 41 43
|
3eqtrd |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ b e. ZZ ) -> ( b x. ( B gcd A ) ) = ( M x. b ) ) |
45 |
44
|
adantlr |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( b x. ( B gcd A ) ) = ( M x. b ) ) |
46 |
29 45
|
sylan9eqr |
|- ( ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) /\ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) ) -> B = ( M x. b ) ) |
47 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
48 |
47
|
3ad2ant1 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> A e. CC ) |
49 |
48
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> A e. CC ) |
50 |
12
|
adantr |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> a e. CC ) |
51 |
|
simp1 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> A e. ZZ ) |
52 |
1
|
3ad2ant2 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> B e. ZZ ) |
53 |
51 52
|
gcdcld |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) e. NN0 ) |
54 |
53
|
nn0cnd |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) e. CC ) |
55 |
54
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( A gcd B ) e. CC ) |
56 |
|
gcdeq0 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
57 |
|
simpr |
|- ( ( A = 0 /\ B = 0 ) -> B = 0 ) |
58 |
56 57
|
syl6bi |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) = 0 -> B = 0 ) ) |
59 |
58
|
necon3d |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( B =/= 0 -> ( A gcd B ) =/= 0 ) ) |
60 |
59
|
impr |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A gcd B ) =/= 0 ) |
61 |
60
|
3adant3 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) =/= 0 ) |
62 |
61
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( A gcd B ) =/= 0 ) |
63 |
49 50 55 62
|
divmul3d |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( A / ( A gcd B ) ) = a <-> A = ( a x. ( A gcd B ) ) ) ) |
64 |
63
|
bicomd |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( A = ( a x. ( A gcd B ) ) <-> ( A / ( A gcd B ) ) = a ) ) |
65 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
66 |
65
|
adantr |
|- ( ( B e. ZZ /\ B =/= 0 ) -> B e. CC ) |
67 |
66
|
3ad2ant2 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> B e. CC ) |
68 |
67
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> B e. CC ) |
69 |
36
|
adantl |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> b e. CC ) |
70 |
68 69 55 62
|
divmul3d |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( B / ( A gcd B ) ) = b <-> B = ( b x. ( A gcd B ) ) ) ) |
71 |
2
|
3adant3 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A e. ZZ /\ B e. ZZ ) ) |
72 |
|
gcdcom |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
73 |
71 72
|
syl |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A gcd B ) = ( B gcd A ) ) |
74 |
73
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
75 |
74
|
oveq2d |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( b x. ( A gcd B ) ) = ( b x. ( B gcd A ) ) ) |
76 |
75
|
eqeq2d |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( B = ( b x. ( A gcd B ) ) <-> B = ( b x. ( B gcd A ) ) ) ) |
77 |
70 76
|
bitr2d |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( B = ( b x. ( B gcd A ) ) <-> ( B / ( A gcd B ) ) = b ) ) |
78 |
64 77
|
anbi12d |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) <-> ( ( A / ( A gcd B ) ) = a /\ ( B / ( A gcd B ) ) = b ) ) ) |
79 |
|
3anass |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) <-> ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) ) |
80 |
79
|
biimpri |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) ) |
81 |
80
|
3adant3 |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) ) |
82 |
|
divgcdcoprm0 |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |
83 |
81 82
|
syl |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |
84 |
|
oveq12 |
|- ( ( ( A / ( A gcd B ) ) = a /\ ( B / ( A gcd B ) ) = b ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = ( a gcd b ) ) |
85 |
84
|
eqeq1d |
|- ( ( ( A / ( A gcd B ) ) = a /\ ( B / ( A gcd B ) ) = b ) -> ( ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 <-> ( a gcd b ) = 1 ) ) |
86 |
83 85
|
syl5ibcom |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( ( ( A / ( A gcd B ) ) = a /\ ( B / ( A gcd B ) ) = b ) -> ( a gcd b ) = 1 ) ) |
87 |
86
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( ( A / ( A gcd B ) ) = a /\ ( B / ( A gcd B ) ) = b ) -> ( a gcd b ) = 1 ) ) |
88 |
78 87
|
sylbid |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) -> ( a gcd b ) = 1 ) ) |
89 |
88
|
imp |
|- ( ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) /\ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) ) -> ( a gcd b ) = 1 ) |
90 |
28 46 89
|
3jca |
|- ( ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) /\ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) ) -> ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) |
91 |
90
|
ex |
|- ( ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) /\ b e. ZZ ) -> ( ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) -> ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) ) |
92 |
91
|
reximdva |
|- ( ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) /\ a e. ZZ ) -> ( E. b e. ZZ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) -> E. b e. ZZ ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) ) |
93 |
92
|
reximdva |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( E. a e. ZZ E. b e. ZZ ( A = ( a x. ( A gcd B ) ) /\ B = ( b x. ( B gcd A ) ) ) -> E. a e. ZZ E. b e. ZZ ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) ) |
94 |
10 93
|
syl5bir |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> ( ( E. a e. ZZ A = ( a x. ( A gcd B ) ) /\ E. b e. ZZ B = ( b x. ( B gcd A ) ) ) -> E. a e. ZZ E. b e. ZZ ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) ) |
95 |
5 9 94
|
mp2and |
|- ( ( A e. ZZ /\ ( B e. ZZ /\ B =/= 0 ) /\ M = ( A gcd B ) ) -> E. a e. ZZ E. b e. ZZ ( A = ( M x. a ) /\ B = ( M x. b ) /\ ( a gcd b ) = 1 ) ) |