| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnz |  |-  ( A e. NN -> A e. ZZ ) | 
						
							| 2 | 1 | anim1i |  |-  ( ( A e. NN /\ B e. ZZ ) -> ( A e. ZZ /\ B e. ZZ ) ) | 
						
							| 3 |  | gcddvds |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) | 
						
							| 4 | 3 | simpld |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || A ) | 
						
							| 5 | 2 4 | syl |  |-  ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) || A ) | 
						
							| 6 |  | nnne0 |  |-  ( A e. NN -> A =/= 0 ) | 
						
							| 7 | 6 | neneqd |  |-  ( A e. NN -> -. A = 0 ) | 
						
							| 8 | 7 | adantr |  |-  ( ( A e. NN /\ B e. ZZ ) -> -. A = 0 ) | 
						
							| 9 | 8 | intnanrd |  |-  ( ( A e. NN /\ B e. ZZ ) -> -. ( A = 0 /\ B = 0 ) ) | 
						
							| 10 |  | gcdn0cl |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) | 
						
							| 11 | 2 9 10 | syl2anc |  |-  ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) e. NN ) | 
						
							| 12 |  | nndivdvds |  |-  ( ( A e. NN /\ ( A gcd B ) e. NN ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. NN ) ) | 
						
							| 13 | 11 12 | syldan |  |-  ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. NN ) ) | 
						
							| 14 | 5 13 | mpbid |  |-  ( ( A e. NN /\ B e. ZZ ) -> ( A / ( A gcd B ) ) e. NN ) |