Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
2 |
1
|
anim1i |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A e. ZZ /\ B e. ZZ ) ) |
3 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
4 |
3
|
simpld |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || A ) |
5 |
2 4
|
syl |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) || A ) |
6 |
|
nnne0 |
|- ( A e. NN -> A =/= 0 ) |
7 |
6
|
neneqd |
|- ( A e. NN -> -. A = 0 ) |
8 |
7
|
adantr |
|- ( ( A e. NN /\ B e. ZZ ) -> -. A = 0 ) |
9 |
8
|
intnanrd |
|- ( ( A e. NN /\ B e. ZZ ) -> -. ( A = 0 /\ B = 0 ) ) |
10 |
|
gcdn0cl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
11 |
2 9 10
|
syl2anc |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) e. NN ) |
12 |
|
nndivdvds |
|- ( ( A e. NN /\ ( A gcd B ) e. NN ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. NN ) ) |
13 |
11 12
|
syldan |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. NN ) ) |
14 |
5 13
|
mpbid |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A / ( A gcd B ) ) e. NN ) |