Description: A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | divgcdnnr | |- ( ( A e. NN /\ B e. ZZ ) -> ( A / ( B gcd A ) ) e. NN ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
2 | gcdcom | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
|
3 | 1 2 | sylan | |- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
4 | 3 | eqcomd | |- ( ( A e. NN /\ B e. ZZ ) -> ( B gcd A ) = ( A gcd B ) ) |
5 | 4 | oveq2d | |- ( ( A e. NN /\ B e. ZZ ) -> ( A / ( B gcd A ) ) = ( A / ( A gcd B ) ) ) |
6 | divgcdnn | |- ( ( A e. NN /\ B e. ZZ ) -> ( A / ( A gcd B ) ) e. NN ) |
|
7 | 5 6 | eqeltrd | |- ( ( A e. NN /\ B e. ZZ ) -> ( A / ( B gcd A ) ) e. NN ) |