Step |
Hyp |
Ref |
Expression |
1 |
|
n2dvds1 |
|- -. 2 || 1 |
2 |
|
2z |
|- 2 e. ZZ |
3 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
4 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
5 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
6 |
3 4 5
|
syl2an |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
7 |
6
|
simpld |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) || A ) |
8 |
|
gcdnncl |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
9 |
8
|
nnzd |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. ZZ ) |
10 |
8
|
nnne0d |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) =/= 0 ) |
11 |
3
|
adantr |
|- ( ( A e. NN /\ B e. NN ) -> A e. ZZ ) |
12 |
|
dvdsval2 |
|- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. ZZ ) ) |
13 |
9 10 11 12
|
syl3anc |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. ZZ ) ) |
14 |
7 13
|
mpbid |
|- ( ( A e. NN /\ B e. NN ) -> ( A / ( A gcd B ) ) e. ZZ ) |
15 |
6
|
simprd |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) || B ) |
16 |
4
|
adantl |
|- ( ( A e. NN /\ B e. NN ) -> B e. ZZ ) |
17 |
|
dvdsval2 |
|- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ B e. ZZ ) -> ( ( A gcd B ) || B <-> ( B / ( A gcd B ) ) e. ZZ ) ) |
18 |
9 10 16 17
|
syl3anc |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || B <-> ( B / ( A gcd B ) ) e. ZZ ) ) |
19 |
15 18
|
mpbid |
|- ( ( A e. NN /\ B e. NN ) -> ( B / ( A gcd B ) ) e. ZZ ) |
20 |
|
dvdsgcdb |
|- ( ( 2 e. ZZ /\ ( A / ( A gcd B ) ) e. ZZ /\ ( B / ( A gcd B ) ) e. ZZ ) -> ( ( 2 || ( A / ( A gcd B ) ) /\ 2 || ( B / ( A gcd B ) ) ) <-> 2 || ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) ) |
21 |
2 14 19 20
|
mp3an2i |
|- ( ( A e. NN /\ B e. NN ) -> ( ( 2 || ( A / ( A gcd B ) ) /\ 2 || ( B / ( A gcd B ) ) ) <-> 2 || ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) ) |
22 |
|
gcddiv |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ ( A gcd B ) e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( ( A gcd B ) / ( A gcd B ) ) = ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) |
23 |
11 16 8 6 22
|
syl31anc |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) / ( A gcd B ) ) = ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) |
24 |
8
|
nncnd |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. CC ) |
25 |
24 10
|
dividd |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) / ( A gcd B ) ) = 1 ) |
26 |
23 25
|
eqtr3d |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |
27 |
26
|
breq2d |
|- ( ( A e. NN /\ B e. NN ) -> ( 2 || ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) <-> 2 || 1 ) ) |
28 |
27
|
biimpd |
|- ( ( A e. NN /\ B e. NN ) -> ( 2 || ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) -> 2 || 1 ) ) |
29 |
21 28
|
sylbid |
|- ( ( A e. NN /\ B e. NN ) -> ( ( 2 || ( A / ( A gcd B ) ) /\ 2 || ( B / ( A gcd B ) ) ) -> 2 || 1 ) ) |
30 |
29
|
expdimp |
|- ( ( ( A e. NN /\ B e. NN ) /\ 2 || ( A / ( A gcd B ) ) ) -> ( 2 || ( B / ( A gcd B ) ) -> 2 || 1 ) ) |
31 |
1 30
|
mtoi |
|- ( ( ( A e. NN /\ B e. NN ) /\ 2 || ( A / ( A gcd B ) ) ) -> -. 2 || ( B / ( A gcd B ) ) ) |
32 |
31
|
ex |
|- ( ( A e. NN /\ B e. NN ) -> ( 2 || ( A / ( A gcd B ) ) -> -. 2 || ( B / ( A gcd B ) ) ) ) |
33 |
|
imor |
|- ( ( 2 || ( A / ( A gcd B ) ) -> -. 2 || ( B / ( A gcd B ) ) ) <-> ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) ) |
34 |
32 33
|
sylib |
|- ( ( A e. NN /\ B e. NN ) -> ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) ) |