Step |
Hyp |
Ref |
Expression |
1 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
2 |
1
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
3 |
2
|
simpld |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) || A ) |
4 |
|
gcd2n0cl |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A gcd B ) e. NN ) |
5 |
|
nnz |
|- ( ( A gcd B ) e. NN -> ( A gcd B ) e. ZZ ) |
6 |
|
nnne0 |
|- ( ( A gcd B ) e. NN -> ( A gcd B ) =/= 0 ) |
7 |
5 6
|
jca |
|- ( ( A gcd B ) e. NN -> ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 ) ) |
8 |
4 7
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 ) ) |
9 |
|
simp1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> A e. ZZ ) |
10 |
|
df-3an |
|- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ A e. ZZ ) <-> ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 ) /\ A e. ZZ ) ) |
11 |
8 9 10
|
sylanbrc |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ A e. ZZ ) ) |
12 |
|
dvdsval2 |
|- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. ZZ ) ) |
13 |
11 12
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. ZZ ) ) |
14 |
3 13
|
mpbid |
|- ( ( A e. ZZ /\ B e. ZZ /\ B =/= 0 ) -> ( A / ( A gcd B ) ) e. ZZ ) |