Metamath Proof Explorer


Theorem divge0

Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999)

Ref Expression
Assertion divge0
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 <_ ( A / B ) )

Proof

Step Hyp Ref Expression
1 ge0div
 |-  ( ( A e. RR /\ B e. RR /\ 0 < B ) -> ( 0 <_ A <-> 0 <_ ( A / B ) ) )
2 1 biimpd
 |-  ( ( A e. RR /\ B e. RR /\ 0 < B ) -> ( 0 <_ A -> 0 <_ ( A / B ) ) )
3 2 3exp
 |-  ( A e. RR -> ( B e. RR -> ( 0 < B -> ( 0 <_ A -> 0 <_ ( A / B ) ) ) ) )
4 3 com34
 |-  ( A e. RR -> ( B e. RR -> ( 0 <_ A -> ( 0 < B -> 0 <_ ( A / B ) ) ) ) )
5 4 com23
 |-  ( A e. RR -> ( 0 <_ A -> ( B e. RR -> ( 0 < B -> 0 <_ ( A / B ) ) ) ) )
6 5 imp43
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 <_ ( A / B ) )