Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpgecld.1 | |- ( ph -> A e. RR ) |
|
rpgecld.2 | |- ( ph -> B e. RR+ ) |
||
divge0d.3 | |- ( ph -> 0 <_ A ) |
||
Assertion | divge0d | |- ( ph -> 0 <_ ( A / B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | |- ( ph -> A e. RR ) |
|
2 | rpgecld.2 | |- ( ph -> B e. RR+ ) |
|
3 | divge0d.3 | |- ( ph -> 0 <_ A ) |
|
4 | 2 | rpregt0d | |- ( ph -> ( B e. RR /\ 0 < B ) ) |
5 | divge0 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 <_ ( A / B ) ) |
|
6 | 1 3 4 5 | syl21anc | |- ( ph -> 0 <_ ( A / B ) ) |