Metamath Proof Explorer


Theorem divge0d

Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1
|- ( ph -> A e. RR )
rpgecld.2
|- ( ph -> B e. RR+ )
divge0d.3
|- ( ph -> 0 <_ A )
Assertion divge0d
|- ( ph -> 0 <_ ( A / B ) )

Proof

Step Hyp Ref Expression
1 rpgecld.1
 |-  ( ph -> A e. RR )
2 rpgecld.2
 |-  ( ph -> B e. RR+ )
3 divge0d.3
 |-  ( ph -> 0 <_ A )
4 2 rpregt0d
 |-  ( ph -> ( B e. RR /\ 0 < B ) )
5 divge0
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 <_ ( A / B ) )
6 1 3 4 5 syl21anc
 |-  ( ph -> 0 <_ ( A / B ) )