Metamath Proof Explorer


Theorem divge0i

Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 12-Aug-1999)

Ref Expression
Hypotheses ltplus1.1
|- A e. RR
prodgt0.2
|- B e. RR
Assertion divge0i
|- ( ( 0 <_ A /\ 0 < B ) -> 0 <_ ( A / B ) )

Proof

Step Hyp Ref Expression
1 ltplus1.1
 |-  A e. RR
2 prodgt0.2
 |-  B e. RR
3 divge0
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 <_ ( A / B ) )
4 2 3 mpanr1
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ 0 < B ) -> 0 <_ ( A / B ) )
5 1 4 mpanl1
 |-  ( ( 0 <_ A /\ 0 < B ) -> 0 <_ ( A / B ) )