| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpgecl |  |-  ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> B e. RR+ ) | 
						
							| 2 |  | rpcn |  |-  ( B e. RR+ -> B e. CC ) | 
						
							| 3 |  | rpne0 |  |-  ( B e. RR+ -> B =/= 0 ) | 
						
							| 4 | 2 3 | dividd |  |-  ( B e. RR+ -> ( B / B ) = 1 ) | 
						
							| 5 | 4 | eqcomd |  |-  ( B e. RR+ -> 1 = ( B / B ) ) | 
						
							| 6 | 1 5 | syl |  |-  ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 1 = ( B / B ) ) | 
						
							| 7 |  | simp3 |  |-  ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> A <_ B ) | 
						
							| 8 |  | simp1 |  |-  ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> A e. RR+ ) | 
						
							| 9 | 8 1 1 | lediv2d |  |-  ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> ( A <_ B <-> ( B / B ) <_ ( B / A ) ) ) | 
						
							| 10 | 7 9 | mpbid |  |-  ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> ( B / B ) <_ ( B / A ) ) | 
						
							| 11 | 6 10 | eqbrtrd |  |-  ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 1 <_ ( B / A ) ) |