Metamath Proof Explorer


Theorem divgt0i2i

Description: The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999)

Ref Expression
Hypotheses ltplus1.1
|- A e. RR
prodgt0.2
|- B e. RR
divgt0i2.3
|- 0 < B
Assertion divgt0i2i
|- ( 0 < A -> 0 < ( A / B ) )

Proof

Step Hyp Ref Expression
1 ltplus1.1
 |-  A e. RR
2 prodgt0.2
 |-  B e. RR
3 divgt0i2.3
 |-  0 < B
4 1 2 divgt0i
 |-  ( ( 0 < A /\ 0 < B ) -> 0 < ( A / B ) )
5 3 4 mpan2
 |-  ( 0 < A -> 0 < ( A / B ) )