Metamath Proof Explorer


Theorem divgt0ii

Description: The ratio of two positive numbers is positive. (Contributed by NM, 18-May-1999)

Ref Expression
Hypotheses ltplus1.1
|- A e. RR
prodgt0.2
|- B e. RR
ltreci.3
|- 0 < A
ltreci.4
|- 0 < B
Assertion divgt0ii
|- 0 < ( A / B )

Proof

Step Hyp Ref Expression
1 ltplus1.1
 |-  A e. RR
2 prodgt0.2
 |-  B e. RR
3 ltreci.3
 |-  0 < A
4 ltreci.4
 |-  0 < B
5 1 2 4 divgt0i2i
 |-  ( 0 < A -> 0 < ( A / B ) )
6 3 5 ax-mp
 |-  0 < ( A / B )