Description: Obsolete version of divid as of 9-Jul-2025. (Contributed by NM, 1-Aug-2004) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dividOLD | |- ( ( A e. CC /\ A =/= 0 ) -> ( A / A ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divrec | |- ( ( A e. CC /\ A e. CC /\ A =/= 0 ) -> ( A / A ) = ( A x. ( 1 / A ) ) ) |
|
| 2 | 1 | 3anidm12 | |- ( ( A e. CC /\ A =/= 0 ) -> ( A / A ) = ( A x. ( 1 / A ) ) ) |
| 3 | recid | |- ( ( A e. CC /\ A =/= 0 ) -> ( A x. ( 1 / A ) ) = 1 ) |
|
| 4 | 2 3 | eqtrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( A / A ) = 1 ) |