Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
|- ( M || N <-> <. M , N >. e. || ) |
2 |
|
df-dvds |
|- || = { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. n e. ZZ ( n x. x ) = y ) } |
3 |
2
|
eleq2i |
|- ( <. M , N >. e. || <-> <. M , N >. e. { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. n e. ZZ ( n x. x ) = y ) } ) |
4 |
1 3
|
bitri |
|- ( M || N <-> <. M , N >. e. { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. n e. ZZ ( n x. x ) = y ) } ) |
5 |
|
oveq2 |
|- ( x = M -> ( n x. x ) = ( n x. M ) ) |
6 |
5
|
eqeq1d |
|- ( x = M -> ( ( n x. x ) = y <-> ( n x. M ) = y ) ) |
7 |
6
|
rexbidv |
|- ( x = M -> ( E. n e. ZZ ( n x. x ) = y <-> E. n e. ZZ ( n x. M ) = y ) ) |
8 |
|
eqeq2 |
|- ( y = N -> ( ( n x. M ) = y <-> ( n x. M ) = N ) ) |
9 |
8
|
rexbidv |
|- ( y = N -> ( E. n e. ZZ ( n x. M ) = y <-> E. n e. ZZ ( n x. M ) = N ) ) |
10 |
7 9
|
opelopab2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( <. M , N >. e. { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. n e. ZZ ( n x. x ) = y ) } <-> E. n e. ZZ ( n x. M ) = N ) ) |
11 |
4 10
|
syl5bb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> E. n e. ZZ ( n x. M ) = N ) ) |