| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 2 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 3 | 2 | simpld |  |-  ( x e. ( 1 (,) +oo ) -> 1 < x ) | 
						
							| 4 | 1 3 | rplogcld |  |-  ( x e. ( 1 (,) +oo ) -> ( log ` x ) e. RR+ ) | 
						
							| 5 | 4 | rprecred |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 / ( log ` x ) ) e. RR ) | 
						
							| 6 | 5 | recnd |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 / ( log ` x ) ) e. CC ) | 
						
							| 7 | 6 | rgen |  |-  A. x e. ( 1 (,) +oo ) ( 1 / ( log ` x ) ) e. CC | 
						
							| 8 | 7 | a1i |  |-  ( T. -> A. x e. ( 1 (,) +oo ) ( 1 / ( log ` x ) ) e. CC ) | 
						
							| 9 |  | ioossre |  |-  ( 1 (,) +oo ) C_ RR | 
						
							| 10 | 9 | a1i |  |-  ( T. -> ( 1 (,) +oo ) C_ RR ) | 
						
							| 11 | 8 10 | rlim0lt |  |-  ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 <-> A. y e. RR+ E. c e. RR A. x e. ( 1 (,) +oo ) ( c < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) ) | 
						
							| 12 | 11 | mptru |  |-  ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 <-> A. y e. RR+ E. c e. RR A. x e. ( 1 (,) +oo ) ( c < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) | 
						
							| 13 |  | id |  |-  ( y e. RR+ -> y e. RR+ ) | 
						
							| 14 | 13 | rprecred |  |-  ( y e. RR+ -> ( 1 / y ) e. RR ) | 
						
							| 15 | 14 | reefcld |  |-  ( y e. RR+ -> ( exp ` ( 1 / y ) ) e. RR ) | 
						
							| 16 | 5 | ad2antlr |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / ( log ` x ) ) e. RR ) | 
						
							| 17 | 1 | ad2antlr |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> x e. RR ) | 
						
							| 18 | 3 | ad2antlr |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 1 < x ) | 
						
							| 19 | 17 18 | rplogcld |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( log ` x ) e. RR+ ) | 
						
							| 20 | 19 | rpreccld |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / ( log ` x ) ) e. RR+ ) | 
						
							| 21 | 20 | rpge0d |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 0 <_ ( 1 / ( log ` x ) ) ) | 
						
							| 22 | 16 21 | absidd |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( abs ` ( 1 / ( log ` x ) ) ) = ( 1 / ( log ` x ) ) ) | 
						
							| 23 |  | simpll |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> y e. RR+ ) | 
						
							| 24 | 4 | ad2antlr |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( log ` x ) e. RR+ ) | 
						
							| 25 |  | simpr |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( exp ` ( 1 / y ) ) < x ) | 
						
							| 26 |  | 1rp |  |-  1 e. RR+ | 
						
							| 27 | 26 | a1i |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 1 e. RR+ ) | 
						
							| 28 | 27 | rpred |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 1 e. RR ) | 
						
							| 29 | 28 17 18 | ltled |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 1 <_ x ) | 
						
							| 30 | 17 27 29 | rpgecld |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> x e. RR+ ) | 
						
							| 31 | 30 | reeflogd |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( exp ` ( log ` x ) ) = x ) | 
						
							| 32 | 25 31 | breqtrrd |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( exp ` ( 1 / y ) ) < ( exp ` ( log ` x ) ) ) | 
						
							| 33 | 23 | rprecred |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / y ) e. RR ) | 
						
							| 34 | 24 | rpred |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( log ` x ) e. RR ) | 
						
							| 35 |  | eflt |  |-  ( ( ( 1 / y ) e. RR /\ ( log ` x ) e. RR ) -> ( ( 1 / y ) < ( log ` x ) <-> ( exp ` ( 1 / y ) ) < ( exp ` ( log ` x ) ) ) ) | 
						
							| 36 | 33 34 35 | syl2anc |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( ( 1 / y ) < ( log ` x ) <-> ( exp ` ( 1 / y ) ) < ( exp ` ( log ` x ) ) ) ) | 
						
							| 37 | 32 36 | mpbird |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / y ) < ( log ` x ) ) | 
						
							| 38 | 23 24 37 | ltrec1d |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / ( log ` x ) ) < y ) | 
						
							| 39 | 22 38 | eqbrtrd |  |-  ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) | 
						
							| 40 | 39 | ex |  |-  ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) -> ( ( exp ` ( 1 / y ) ) < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) | 
						
							| 41 | 40 | ralrimiva |  |-  ( y e. RR+ -> A. x e. ( 1 (,) +oo ) ( ( exp ` ( 1 / y ) ) < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) | 
						
							| 42 |  | breq1 |  |-  ( c = ( exp ` ( 1 / y ) ) -> ( c < x <-> ( exp ` ( 1 / y ) ) < x ) ) | 
						
							| 43 | 42 | rspceaimv |  |-  ( ( ( exp ` ( 1 / y ) ) e. RR /\ A. x e. ( 1 (,) +oo ) ( ( exp ` ( 1 / y ) ) < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) -> E. c e. RR A. x e. ( 1 (,) +oo ) ( c < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) | 
						
							| 44 | 15 41 43 | syl2anc |  |-  ( y e. RR+ -> E. c e. RR A. x e. ( 1 (,) +oo ) ( c < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) | 
						
							| 45 | 12 44 | mprgbir |  |-  ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 |