Metamath Proof Explorer


Theorem divlt0gt0d

Description: The ratio of a negative numerator and a positive denominator is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses divlt0gt0d.1
|- ( ph -> A e. RR )
divlt0gt0d.2
|- ( ph -> B e. RR+ )
divlt0gt0d.3
|- ( ph -> A < 0 )
Assertion divlt0gt0d
|- ( ph -> ( A / B ) < 0 )

Proof

Step Hyp Ref Expression
1 divlt0gt0d.1
 |-  ( ph -> A e. RR )
2 divlt0gt0d.2
 |-  ( ph -> B e. RR+ )
3 divlt0gt0d.3
 |-  ( ph -> A < 0 )
4 0red
 |-  ( ph -> 0 e. RR )
5 1 4 ltnled
 |-  ( ph -> ( A < 0 <-> -. 0 <_ A ) )
6 3 5 mpbid
 |-  ( ph -> -. 0 <_ A )
7 1 2 ge0divd
 |-  ( ph -> ( 0 <_ A <-> 0 <_ ( A / B ) ) )
8 6 7 mtbid
 |-  ( ph -> -. 0 <_ ( A / B ) )
9 1 2 rerpdivcld
 |-  ( ph -> ( A / B ) e. RR )
10 9 4 ltnled
 |-  ( ph -> ( ( A / B ) < 0 <-> -. 0 <_ ( A / B ) ) )
11 8 10 mpbird
 |-  ( ph -> ( A / B ) < 0 )