Description: The ratio of a negative numerator and a positive denominator is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divlt0gt0d.1 | |- ( ph -> A e. RR ) |
|
divlt0gt0d.2 | |- ( ph -> B e. RR+ ) |
||
divlt0gt0d.3 | |- ( ph -> A < 0 ) |
||
Assertion | divlt0gt0d | |- ( ph -> ( A / B ) < 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divlt0gt0d.1 | |- ( ph -> A e. RR ) |
|
2 | divlt0gt0d.2 | |- ( ph -> B e. RR+ ) |
|
3 | divlt0gt0d.3 | |- ( ph -> A < 0 ) |
|
4 | 0red | |- ( ph -> 0 e. RR ) |
|
5 | 1 4 | ltnled | |- ( ph -> ( A < 0 <-> -. 0 <_ A ) ) |
6 | 3 5 | mpbid | |- ( ph -> -. 0 <_ A ) |
7 | 1 2 | ge0divd | |- ( ph -> ( 0 <_ A <-> 0 <_ ( A / B ) ) ) |
8 | 6 7 | mtbid | |- ( ph -> -. 0 <_ ( A / B ) ) |
9 | 1 2 | rerpdivcld | |- ( ph -> ( A / B ) e. RR ) |
10 | 9 4 | ltnled | |- ( ph -> ( ( A / B ) < 0 <-> -. 0 <_ ( A / B ) ) ) |
11 | 8 10 | mpbird | |- ( ph -> ( A / B ) < 0 ) |