Step |
Hyp |
Ref |
Expression |
1 |
|
divval |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) = ( iota_ x e. CC ( C x. x ) = A ) ) |
2 |
1
|
3expb |
|- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) = ( iota_ x e. CC ( C x. x ) = A ) ) |
3 |
2
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) = ( iota_ x e. CC ( C x. x ) = A ) ) |
4 |
3
|
eqeq1d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = B <-> ( iota_ x e. CC ( C x. x ) = A ) = B ) ) |
5 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
6 |
|
receu |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> E! x e. CC ( C x. x ) = A ) |
7 |
6
|
3expb |
|- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> E! x e. CC ( C x. x ) = A ) |
8 |
|
oveq2 |
|- ( x = B -> ( C x. x ) = ( C x. B ) ) |
9 |
8
|
eqeq1d |
|- ( x = B -> ( ( C x. x ) = A <-> ( C x. B ) = A ) ) |
10 |
9
|
riota2 |
|- ( ( B e. CC /\ E! x e. CC ( C x. x ) = A ) -> ( ( C x. B ) = A <-> ( iota_ x e. CC ( C x. x ) = A ) = B ) ) |
11 |
5 7 10
|
3imp3i2an |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) = A <-> ( iota_ x e. CC ( C x. x ) = A ) = B ) ) |
12 |
4 11
|
bitr4d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = B <-> ( C x. B ) = A ) ) |