Step |
Hyp |
Ref |
Expression |
1 |
|
mulcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
2 |
1
|
adantr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( A x. B ) = ( B x. A ) ) |
3 |
2
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A x. B ) / ( C x. D ) ) = ( ( B x. A ) / ( C x. D ) ) ) |
4 |
|
divmuldiv |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |
5 |
|
divmuldiv |
|- ( ( ( B e. CC /\ A e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( B / C ) x. ( A / D ) ) = ( ( B x. A ) / ( C x. D ) ) ) |
6 |
5
|
ancom1s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( B / C ) x. ( A / D ) ) = ( ( B x. A ) / ( C x. D ) ) ) |
7 |
3 4 6
|
3eqtr4d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( B / C ) x. ( A / D ) ) ) |