Metamath Proof Explorer


Theorem divmul13i

Description: Swap denominators of two ratios. (Contributed by NM, 6-Aug-1999)

Ref Expression
Hypotheses divclz.1
|- A e. CC
divclz.2
|- B e. CC
divmulz.3
|- C e. CC
divmuldiv.4
|- D e. CC
divmuldiv.5
|- B =/= 0
divmuldiv.6
|- D =/= 0
Assertion divmul13i
|- ( ( A / B ) x. ( C / D ) ) = ( ( C / B ) x. ( A / D ) )

Proof

Step Hyp Ref Expression
1 divclz.1
 |-  A e. CC
2 divclz.2
 |-  B e. CC
3 divmulz.3
 |-  C e. CC
4 divmuldiv.4
 |-  D e. CC
5 divmuldiv.5
 |-  B =/= 0
6 divmuldiv.6
 |-  D =/= 0
7 3 1 mulcomi
 |-  ( C x. A ) = ( A x. C )
8 7 oveq1i
 |-  ( ( C x. A ) / ( B x. D ) ) = ( ( A x. C ) / ( B x. D ) )
9 3 2 1 4 5 6 divmuldivi
 |-  ( ( C / B ) x. ( A / D ) ) = ( ( C x. A ) / ( B x. D ) )
10 1 2 3 4 5 6 divmuldivi
 |-  ( ( A / B ) x. ( C / D ) ) = ( ( A x. C ) / ( B x. D ) )
11 8 9 10 3eqtr4ri
 |-  ( ( A / B ) x. ( C / D ) ) = ( ( C / B ) x. ( A / D ) )