Description: Swap denominators of two ratios. (Contributed by NM, 6-Aug-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divclz.1 | |- A e. CC |
|
divclz.2 | |- B e. CC |
||
divmulz.3 | |- C e. CC |
||
divmuldiv.4 | |- D e. CC |
||
divmuldiv.5 | |- B =/= 0 |
||
divmuldiv.6 | |- D =/= 0 |
||
Assertion | divmul13i | |- ( ( A / B ) x. ( C / D ) ) = ( ( C / B ) x. ( A / D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divclz.1 | |- A e. CC |
|
2 | divclz.2 | |- B e. CC |
|
3 | divmulz.3 | |- C e. CC |
|
4 | divmuldiv.4 | |- D e. CC |
|
5 | divmuldiv.5 | |- B =/= 0 |
|
6 | divmuldiv.6 | |- D =/= 0 |
|
7 | 3 1 | mulcomi | |- ( C x. A ) = ( A x. C ) |
8 | 7 | oveq1i | |- ( ( C x. A ) / ( B x. D ) ) = ( ( A x. C ) / ( B x. D ) ) |
9 | 3 2 1 4 5 6 | divmuldivi | |- ( ( C / B ) x. ( A / D ) ) = ( ( C x. A ) / ( B x. D ) ) |
10 | 1 2 3 4 5 6 | divmuldivi | |- ( ( A / B ) x. ( C / D ) ) = ( ( A x. C ) / ( B x. D ) ) |
11 | 8 9 10 | 3eqtr4ri | |- ( ( A / B ) x. ( C / D ) ) = ( ( C / B ) x. ( A / D ) ) |