Description: Swap denominators of two ratios. (Contributed by NM, 6-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | |- A e. CC |
|
| divclz.2 | |- B e. CC |
||
| divmulz.3 | |- C e. CC |
||
| divmuldiv.4 | |- D e. CC |
||
| divmuldiv.5 | |- B =/= 0 |
||
| divmuldiv.6 | |- D =/= 0 |
||
| Assertion | divmul13i | |- ( ( A / B ) x. ( C / D ) ) = ( ( C / B ) x. ( A / D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclz.1 | |- A e. CC |
|
| 2 | divclz.2 | |- B e. CC |
|
| 3 | divmulz.3 | |- C e. CC |
|
| 4 | divmuldiv.4 | |- D e. CC |
|
| 5 | divmuldiv.5 | |- B =/= 0 |
|
| 6 | divmuldiv.6 | |- D =/= 0 |
|
| 7 | 3 1 | mulcomi | |- ( C x. A ) = ( A x. C ) |
| 8 | 7 | oveq1i | |- ( ( C x. A ) / ( B x. D ) ) = ( ( A x. C ) / ( B x. D ) ) |
| 9 | 3 2 1 4 5 6 | divmuldivi | |- ( ( C / B ) x. ( A / D ) ) = ( ( C x. A ) / ( B x. D ) ) |
| 10 | 1 2 3 4 5 6 | divmuldivi | |- ( ( A / B ) x. ( C / D ) ) = ( ( A x. C ) / ( B x. D ) ) |
| 11 | 8 9 10 | 3eqtr4ri | |- ( ( A / B ) x. ( C / D ) ) = ( ( C / B ) x. ( A / D ) ) |