Step |
Hyp |
Ref |
Expression |
1 |
|
mulcom |
|- ( ( C e. CC /\ D e. CC ) -> ( C x. D ) = ( D x. C ) ) |
2 |
1
|
ad2ant2r |
|- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C x. D ) = ( D x. C ) ) |
3 |
2
|
adantl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C x. D ) = ( D x. C ) ) |
4 |
3
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A x. B ) / ( C x. D ) ) = ( ( A x. B ) / ( D x. C ) ) ) |
5 |
|
divmuldiv |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |
6 |
|
divmuldiv |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( D e. CC /\ D =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( ( A / D ) x. ( B / C ) ) = ( ( A x. B ) / ( D x. C ) ) ) |
7 |
6
|
ancom2s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / D ) x. ( B / C ) ) = ( ( A x. B ) / ( D x. C ) ) ) |
8 |
4 5 7
|
3eqtr4d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A / D ) x. ( B / C ) ) ) |