| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divmul2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = B <-> A = ( C x. B ) ) ) |
| 2 |
|
mulcom |
|- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
| 3 |
2
|
adantrr |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B x. C ) = ( C x. B ) ) |
| 4 |
3
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B x. C ) = ( C x. B ) ) |
| 5 |
4
|
eqeq2d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A = ( B x. C ) <-> A = ( C x. B ) ) ) |
| 6 |
1 5
|
bitr4d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = B <-> A = ( B x. C ) ) ) |