Step |
Hyp |
Ref |
Expression |
1 |
|
3anass |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) <-> ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) ) |
2 |
|
3anass |
|- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) <-> ( B e. CC /\ ( D e. CC /\ D =/= 0 ) ) ) |
3 |
|
divcl |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
4 |
|
divcl |
|- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> ( B / D ) e. CC ) |
5 |
|
mulcl |
|- ( ( ( A / C ) e. CC /\ ( B / D ) e. CC ) -> ( ( A / C ) x. ( B / D ) ) e. CC ) |
6 |
3 4 5
|
syl2an |
|- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( A / C ) x. ( B / D ) ) e. CC ) |
7 |
|
mulcl |
|- ( ( C e. CC /\ D e. CC ) -> ( C x. D ) e. CC ) |
8 |
7
|
ad2ant2r |
|- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C x. D ) e. CC ) |
9 |
8
|
3adantr1 |
|- ( ( ( C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( C x. D ) e. CC ) |
10 |
9
|
3adantl1 |
|- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( C x. D ) e. CC ) |
11 |
|
mulne0 |
|- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C x. D ) =/= 0 ) |
12 |
11
|
3adantr1 |
|- ( ( ( C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( C x. D ) =/= 0 ) |
13 |
12
|
3adantl1 |
|- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( C x. D ) =/= 0 ) |
14 |
|
divcan3 |
|- ( ( ( ( A / C ) x. ( B / D ) ) e. CC /\ ( C x. D ) e. CC /\ ( C x. D ) =/= 0 ) -> ( ( ( C x. D ) x. ( ( A / C ) x. ( B / D ) ) ) / ( C x. D ) ) = ( ( A / C ) x. ( B / D ) ) ) |
15 |
6 10 13 14
|
syl3anc |
|- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( ( C x. D ) x. ( ( A / C ) x. ( B / D ) ) ) / ( C x. D ) ) = ( ( A / C ) x. ( B / D ) ) ) |
16 |
|
simp2 |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> C e. CC ) |
17 |
16 3
|
jca |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( C e. CC /\ ( A / C ) e. CC ) ) |
18 |
|
simp2 |
|- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> D e. CC ) |
19 |
18 4
|
jca |
|- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> ( D e. CC /\ ( B / D ) e. CC ) ) |
20 |
|
mul4 |
|- ( ( ( C e. CC /\ ( A / C ) e. CC ) /\ ( D e. CC /\ ( B / D ) e. CC ) ) -> ( ( C x. ( A / C ) ) x. ( D x. ( B / D ) ) ) = ( ( C x. D ) x. ( ( A / C ) x. ( B / D ) ) ) ) |
21 |
17 19 20
|
syl2an |
|- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( C x. ( A / C ) ) x. ( D x. ( B / D ) ) ) = ( ( C x. D ) x. ( ( A / C ) x. ( B / D ) ) ) ) |
22 |
|
divcan2 |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( C x. ( A / C ) ) = A ) |
23 |
|
divcan2 |
|- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> ( D x. ( B / D ) ) = B ) |
24 |
22 23
|
oveqan12d |
|- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( C x. ( A / C ) ) x. ( D x. ( B / D ) ) ) = ( A x. B ) ) |
25 |
21 24
|
eqtr3d |
|- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( C x. D ) x. ( ( A / C ) x. ( B / D ) ) ) = ( A x. B ) ) |
26 |
25
|
oveq1d |
|- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( ( C x. D ) x. ( ( A / C ) x. ( B / D ) ) ) / ( C x. D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |
27 |
15 26
|
eqtr3d |
|- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |
28 |
1 2 27
|
syl2anbr |
|- ( ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) /\ ( B e. CC /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |
29 |
28
|
an4s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |