| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divmuldivsd.1 |
|- ( ph -> A e. No ) |
| 2 |
|
divmuldivsd.2 |
|- ( ph -> B e. No ) |
| 3 |
|
divmuldivsd.3 |
|- ( ph -> C e. No ) |
| 4 |
|
divmuldivsd.4 |
|- ( ph -> D e. No ) |
| 5 |
|
divmuldivsd.5 |
|- ( ph -> B =/= 0s ) |
| 6 |
|
divmuldivsd.6 |
|- ( ph -> D =/= 0s ) |
| 7 |
1 2 5
|
divscld |
|- ( ph -> ( A /su B ) e. No ) |
| 8 |
3 4 6
|
divscld |
|- ( ph -> ( C /su D ) e. No ) |
| 9 |
2 4 7 8
|
muls4d |
|- ( ph -> ( ( B x.s D ) x.s ( ( A /su B ) x.s ( C /su D ) ) ) = ( ( B x.s ( A /su B ) ) x.s ( D x.s ( C /su D ) ) ) ) |
| 10 |
1 2 5
|
divscan2d |
|- ( ph -> ( B x.s ( A /su B ) ) = A ) |
| 11 |
3 4 6
|
divscan2d |
|- ( ph -> ( D x.s ( C /su D ) ) = C ) |
| 12 |
10 11
|
oveq12d |
|- ( ph -> ( ( B x.s ( A /su B ) ) x.s ( D x.s ( C /su D ) ) ) = ( A x.s C ) ) |
| 13 |
9 12
|
eqtrd |
|- ( ph -> ( ( B x.s D ) x.s ( ( A /su B ) x.s ( C /su D ) ) ) = ( A x.s C ) ) |
| 14 |
1 3
|
mulscld |
|- ( ph -> ( A x.s C ) e. No ) |
| 15 |
7 8
|
mulscld |
|- ( ph -> ( ( A /su B ) x.s ( C /su D ) ) e. No ) |
| 16 |
2 4
|
mulscld |
|- ( ph -> ( B x.s D ) e. No ) |
| 17 |
2 4
|
mulsne0bd |
|- ( ph -> ( ( B x.s D ) =/= 0s <-> ( B =/= 0s /\ D =/= 0s ) ) ) |
| 18 |
5 6 17
|
mpbir2and |
|- ( ph -> ( B x.s D ) =/= 0s ) |
| 19 |
14 15 16 18
|
divsmuld |
|- ( ph -> ( ( ( A x.s C ) /su ( B x.s D ) ) = ( ( A /su B ) x.s ( C /su D ) ) <-> ( ( B x.s D ) x.s ( ( A /su B ) x.s ( C /su D ) ) ) = ( A x.s C ) ) ) |
| 20 |
13 19
|
mpbird |
|- ( ph -> ( ( A x.s C ) /su ( B x.s D ) ) = ( ( A /su B ) x.s ( C /su D ) ) ) |
| 21 |
20
|
eqcomd |
|- ( ph -> ( ( A /su B ) x.s ( C /su D ) ) = ( ( A x.s C ) /su ( B x.s D ) ) ) |