Step |
Hyp |
Ref |
Expression |
1 |
|
divcl |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
2 |
1
|
3expb |
|- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
3 |
2
|
ad2ant2r |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( A / C ) e. CC ) |
4 |
|
divcl |
|- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> ( B / D ) e. CC ) |
5 |
4
|
3expb |
|- ( ( B e. CC /\ ( D e. CC /\ D =/= 0 ) ) -> ( B / D ) e. CC ) |
6 |
5
|
ad2ant2l |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( B / D ) e. CC ) |
7 |
|
mulcl |
|- ( ( C e. CC /\ D e. CC ) -> ( C x. D ) e. CC ) |
8 |
7
|
ad2ant2r |
|- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C x. D ) e. CC ) |
9 |
|
mulne0 |
|- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C x. D ) =/= 0 ) |
10 |
8 9
|
jca |
|- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( C x. D ) e. CC /\ ( C x. D ) =/= 0 ) ) |
11 |
10
|
adantl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C x. D ) e. CC /\ ( C x. D ) =/= 0 ) ) |
12 |
|
mulcan2 |
|- ( ( ( A / C ) e. CC /\ ( B / D ) e. CC /\ ( ( C x. D ) e. CC /\ ( C x. D ) =/= 0 ) ) -> ( ( ( A / C ) x. ( C x. D ) ) = ( ( B / D ) x. ( C x. D ) ) <-> ( A / C ) = ( B / D ) ) ) |
13 |
3 6 11 12
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A / C ) x. ( C x. D ) ) = ( ( B / D ) x. ( C x. D ) ) <-> ( A / C ) = ( B / D ) ) ) |
14 |
|
simprll |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> C e. CC ) |
15 |
|
simprrl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> D e. CC ) |
16 |
3 14 15
|
mulassd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A / C ) x. C ) x. D ) = ( ( A / C ) x. ( C x. D ) ) ) |
17 |
|
divcan1 |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( ( A / C ) x. C ) = A ) |
18 |
17
|
3expb |
|- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) x. C ) = A ) |
19 |
18
|
ad2ant2r |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. C ) = A ) |
20 |
19
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A / C ) x. C ) x. D ) = ( A x. D ) ) |
21 |
16 20
|
eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( C x. D ) ) = ( A x. D ) ) |
22 |
14 15
|
mulcomd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C x. D ) = ( D x. C ) ) |
23 |
22
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( B / D ) x. ( C x. D ) ) = ( ( B / D ) x. ( D x. C ) ) ) |
24 |
6 15 14
|
mulassd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( B / D ) x. D ) x. C ) = ( ( B / D ) x. ( D x. C ) ) ) |
25 |
|
divcan1 |
|- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> ( ( B / D ) x. D ) = B ) |
26 |
25
|
3expb |
|- ( ( B e. CC /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( B / D ) x. D ) = B ) |
27 |
26
|
ad2ant2l |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( B / D ) x. D ) = B ) |
28 |
27
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( B / D ) x. D ) x. C ) = ( B x. C ) ) |
29 |
23 24 28
|
3eqtr2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( B / D ) x. ( C x. D ) ) = ( B x. C ) ) |
30 |
21 29
|
eqeq12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A / C ) x. ( C x. D ) ) = ( ( B / D ) x. ( C x. D ) ) <-> ( A x. D ) = ( B x. C ) ) ) |
31 |
13 30
|
bitr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) = ( B / D ) <-> ( A x. D ) = ( B x. C ) ) ) |