Metamath Proof Explorer


Theorem divmuli

Description: Relationship between division and multiplication. (Contributed by NM, 2-Feb-1995) (Revised by Mario Carneiro, 17-Feb-2014)

Ref Expression
Hypotheses divclz.1
|- A e. CC
divclz.2
|- B e. CC
divmulz.3
|- C e. CC
divmul.4
|- B =/= 0
Assertion divmuli
|- ( ( A / B ) = C <-> ( B x. C ) = A )

Proof

Step Hyp Ref Expression
1 divclz.1
 |-  A e. CC
2 divclz.2
 |-  B e. CC
3 divmulz.3
 |-  C e. CC
4 divmul.4
 |-  B =/= 0
5 1 2 3 divmulzi
 |-  ( B =/= 0 -> ( ( A / B ) = C <-> ( B x. C ) = A ) )
6 4 5 ax-mp
 |-  ( ( A / B ) = C <-> ( B x. C ) = A )