Metamath Proof Explorer


Theorem divne0i

Description: The ratio of nonzero numbers is nonzero. (Contributed by NM, 9-Feb-1995)

Ref Expression
Hypotheses divclz.1
|- A e. CC
divclz.2
|- B e. CC
divneq0.3
|- A =/= 0
divneq0.4
|- B =/= 0
Assertion divne0i
|- ( A / B ) =/= 0

Proof

Step Hyp Ref Expression
1 divclz.1
 |-  A e. CC
2 divclz.2
 |-  B e. CC
3 divneq0.3
 |-  A =/= 0
4 divneq0.4
 |-  B =/= 0
5 divne0
 |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) =/= 0 )
6 1 3 2 4 5 mp4an
 |-  ( A / B ) =/= 0