Step |
Hyp |
Ref |
Expression |
1 |
|
reccl |
|- ( ( B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC ) |
2 |
|
mulneg1 |
|- ( ( A e. CC /\ ( 1 / B ) e. CC ) -> ( -u A x. ( 1 / B ) ) = -u ( A x. ( 1 / B ) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( -u A x. ( 1 / B ) ) = -u ( A x. ( 1 / B ) ) ) |
4 |
3
|
3impb |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u A x. ( 1 / B ) ) = -u ( A x. ( 1 / B ) ) ) |
5 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
6 |
|
divrec |
|- ( ( -u A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u A / B ) = ( -u A x. ( 1 / B ) ) ) |
7 |
5 6
|
syl3an1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u A / B ) = ( -u A x. ( 1 / B ) ) ) |
8 |
|
divrec |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
9 |
8
|
negeqd |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( A / B ) = -u ( A x. ( 1 / B ) ) ) |
10 |
4 7 9
|
3eqtr4rd |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( A / B ) = ( -u A / B ) ) |