Metamath Proof Explorer


Theorem divneg2

Description: Move negative sign inside of a division. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion divneg2
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( A / B ) = ( A / -u B ) )

Proof

Step Hyp Ref Expression
1 divneg
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( A / B ) = ( -u A / B ) )
2 negcl
 |-  ( A e. CC -> -u A e. CC )
3 div2neg
 |-  ( ( -u A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u -u A / -u B ) = ( -u A / B ) )
4 2 3 syl3an1
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u -u A / -u B ) = ( -u A / B ) )
5 negneg
 |-  ( A e. CC -> -u -u A = A )
6 5 3ad2ant1
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u -u A = A )
7 6 oveq1d
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u -u A / -u B ) = ( A / -u B ) )
8 1 4 7 3eqtr2d
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( A / B ) = ( A / -u B ) )