| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
| 2 |
|
rerpdivcl |
|- ( ( ( abs ` A ) e. RR /\ x e. RR+ ) -> ( ( abs ` A ) / x ) e. RR ) |
| 3 |
1 2
|
sylan |
|- ( ( A e. CC /\ x e. RR+ ) -> ( ( abs ` A ) / x ) e. RR ) |
| 4 |
|
simpll |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> A e. CC ) |
| 5 |
|
rpcn |
|- ( n e. RR+ -> n e. CC ) |
| 6 |
5
|
ad2antrl |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> n e. CC ) |
| 7 |
|
rpne0 |
|- ( n e. RR+ -> n =/= 0 ) |
| 8 |
7
|
ad2antrl |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> n =/= 0 ) |
| 9 |
4 6 8
|
absdivd |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( abs ` ( A / n ) ) = ( ( abs ` A ) / ( abs ` n ) ) ) |
| 10 |
|
rpre |
|- ( n e. RR+ -> n e. RR ) |
| 11 |
10
|
ad2antrl |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> n e. RR ) |
| 12 |
|
rpge0 |
|- ( n e. RR+ -> 0 <_ n ) |
| 13 |
12
|
ad2antrl |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> 0 <_ n ) |
| 14 |
11 13
|
absidd |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( abs ` n ) = n ) |
| 15 |
14
|
oveq2d |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( ( abs ` A ) / ( abs ` n ) ) = ( ( abs ` A ) / n ) ) |
| 16 |
9 15
|
eqtrd |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( abs ` ( A / n ) ) = ( ( abs ` A ) / n ) ) |
| 17 |
|
simprr |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( ( abs ` A ) / x ) < n ) |
| 18 |
4
|
abscld |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( abs ` A ) e. RR ) |
| 19 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 20 |
19
|
ad2antlr |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> x e. RR ) |
| 21 |
|
rpgt0 |
|- ( x e. RR+ -> 0 < x ) |
| 22 |
21
|
ad2antlr |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> 0 < x ) |
| 23 |
|
rpgt0 |
|- ( n e. RR+ -> 0 < n ) |
| 24 |
23
|
ad2antrl |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> 0 < n ) |
| 25 |
|
ltdiv23 |
|- ( ( ( abs ` A ) e. RR /\ ( x e. RR /\ 0 < x ) /\ ( n e. RR /\ 0 < n ) ) -> ( ( ( abs ` A ) / x ) < n <-> ( ( abs ` A ) / n ) < x ) ) |
| 26 |
18 20 22 11 24 25
|
syl122anc |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( ( ( abs ` A ) / x ) < n <-> ( ( abs ` A ) / n ) < x ) ) |
| 27 |
17 26
|
mpbid |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( ( abs ` A ) / n ) < x ) |
| 28 |
16 27
|
eqbrtrd |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( abs ` ( A / n ) ) < x ) |
| 29 |
28
|
expr |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ n e. RR+ ) -> ( ( ( abs ` A ) / x ) < n -> ( abs ` ( A / n ) ) < x ) ) |
| 30 |
29
|
ralrimiva |
|- ( ( A e. CC /\ x e. RR+ ) -> A. n e. RR+ ( ( ( abs ` A ) / x ) < n -> ( abs ` ( A / n ) ) < x ) ) |
| 31 |
|
breq1 |
|- ( y = ( ( abs ` A ) / x ) -> ( y < n <-> ( ( abs ` A ) / x ) < n ) ) |
| 32 |
31
|
rspceaimv |
|- ( ( ( ( abs ` A ) / x ) e. RR /\ A. n e. RR+ ( ( ( abs ` A ) / x ) < n -> ( abs ` ( A / n ) ) < x ) ) -> E. y e. RR A. n e. RR+ ( y < n -> ( abs ` ( A / n ) ) < x ) ) |
| 33 |
3 30 32
|
syl2anc |
|- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR A. n e. RR+ ( y < n -> ( abs ` ( A / n ) ) < x ) ) |
| 34 |
33
|
ralrimiva |
|- ( A e. CC -> A. x e. RR+ E. y e. RR A. n e. RR+ ( y < n -> ( abs ` ( A / n ) ) < x ) ) |
| 35 |
|
simpl |
|- ( ( A e. CC /\ n e. RR+ ) -> A e. CC ) |
| 36 |
5
|
adantl |
|- ( ( A e. CC /\ n e. RR+ ) -> n e. CC ) |
| 37 |
7
|
adantl |
|- ( ( A e. CC /\ n e. RR+ ) -> n =/= 0 ) |
| 38 |
35 36 37
|
divcld |
|- ( ( A e. CC /\ n e. RR+ ) -> ( A / n ) e. CC ) |
| 39 |
38
|
ralrimiva |
|- ( A e. CC -> A. n e. RR+ ( A / n ) e. CC ) |
| 40 |
|
rpssre |
|- RR+ C_ RR |
| 41 |
40
|
a1i |
|- ( A e. CC -> RR+ C_ RR ) |
| 42 |
39 41
|
rlim0lt |
|- ( A e. CC -> ( ( n e. RR+ |-> ( A / n ) ) ~~>r 0 <-> A. x e. RR+ E. y e. RR A. n e. RR+ ( y < n -> ( abs ` ( A / n ) ) < x ) ) ) |
| 43 |
34 42
|
mpbird |
|- ( A e. CC -> ( n e. RR+ |-> ( A / n ) ) ~~>r 0 ) |